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Given a nonnegative matrix X (X ≥ 0), compute nonnegative A and S such that

𝑋 ≈ 𝐴𝑆

D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788, 1999.
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ABSTRACT
Fully unsupervised topic models have found fantastic success
in document clustering and classification. However, these
models often suffer from the tendency to learn less-than-
meaningful or even redundant topics when the data is biased
towards a set of features. For this reason, we propose an
approach based upon the nonnegative matrix factorization
(NMF) model, deemed Guided NMF, that incorporates user-
designed seed word supervision. Our experimental results
demonstrate the promise of this model and illustrate that it
is competitive with other methods of this ilk with only very
little supervision information.

Index Terms— supervised topic models, supervised non-
negative matrix factorization, seed words

1. INTRODUCTION

As modern data collection and storage capabilities improve
and grow, so do the size and complexity of modern data sets
that data practitioners are tasked with turning to actionable
knowledge. For this reason, data scientists are increasingly
turning to unsupervised dimensionality-reduction and topic
modeling techniques to understand the latent trends within
their data. These approaches have produced fantastic results
in document clustering and classification, see e.g., [1, 2].

However, it has been previously noted that such models
can learn topics that are not meaningful or effective in down-
stream tasks [3]. In particular, these models can be hindered
by data in which certain features are so weighted as to bias
the models towards topics with these features and away from
more balanced and meaningful topics [4].

For this reason, we develop a supervised topic model that
incorporates flexible supervision information representing
user knowledge of feature importance and associations. Our
approach is based upon the popular nonnegative matrix fac-
torization (NMF) [5] and builds upon its supervised variant,
semi-supervised NMF (SSNMF) [6]. The key difference in
our approach, however, is that our goal is to guide the topic
outputs, rather than provide labels for classification. The goal

The authors were partially supported by NSF DMS #2011140 and NSF
BIGDATA #1740325.

is thus to identify topics within the data that are driven by the
seeded features, thereby revealing more meaningful topics
for the particular application.

1.1. Nonnegative matrix factorization

NMF is an approach typically applied in unsupervised tasks
such as dimensionality-reduction, latent topic modeling, and
clustering. Given nonnegative data matrix X 2 Rm⇥n

�0 and a
user-defined target dimension k 2 N, NMF seeks nonnegative
factor matrices A 2 Rm⇥k

�0 , often referred to as the dictionary

or topic matrix, and S 2 Rk⇥n
�0 , often referred to as the rep-

resentation or coefficient matrix, such that X ⇡ AS. There
are many formulations of this model (see e.g., [7, 5, 8]) but
the most popular utilizes the Frobenius norm,

argmin
A�0,S�0

kX �ASk2F . (1)

Here and throughout, A � 0 denotes the constraint that A
is entry-wise nonnegative. The user-defined parameter k,
which represents the target dimension or the number of be-
lieved latent topics, governs the quality of reconstruction of
the data; generally k is chosen so that k < min{m,n} to
ensure non-triviality of the factorization. The columns of A
are often referred to as topics; the NMF approximations to the
data (columns of X) are additive nonnegative combinations
of these topic vectors. This property of NMF approximations
yields interpretability since the strength of relationship be-
tween a given data point (column of X) and the topics of
A is clearly visible in the coefficient vector (corresponding
column of S). For this reason, NMF has found popularity
in applications such as document clustering [1], image and
audio processing [9, 10], and financial data mining [11].

1.2. Semi-supervised nonnegative matrix factorization

SSNMF is a modified variant of NMF that jointly factorizes
a data matrix X 2 Rm⇥n

�0 and a supervision information ma-
trix Y 2 Rc⇥n

�0 with the goal of learning a dimensionality-
reduction model and a model for a supervised learning task
(e.g., classification). That is, given data matrix X , supervi-
sion matrix Y , and target dimension k 2 N, SSNMF seeks

Formulated as the optimization task:

D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788, 1999.
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Neural NMF

M. Gao et al. “Neural nonnegative matrix factorization for hierarchical multilayer topic modeling,”  in Proc. Int. Workshop on Comp. Adv. in 
Multi-Sensor Adaptive Process., 2019.

Regard the A matrices as weights, and determine S matrices from A matrices, and define
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Nonnegative CP Decomposition (NCPD)

Given a nonnegative tensor X (X ≥ 0), compute nonnegative X1, X2 , … Xk such that
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Abstract—There is a significant demand for topic modeling on
large-scale data with complex multi-modal structure in applica-
tions such as multi-layer network analysis, temporal document
classification, and video data analysis; frequently this multi-
modal data has latent hierarchical structure. We propose a
new hierarchical nonnegative CANDECOMP/PARAFAC (CP) de-
composition (hierarchical NCPD) model and a training method,
Neural NCPD, for performing hierarchical topic modeling on
multi-modal tensor data. Neural NCPD utilizes a neural network
architecture and backpropagation to mitigate error propagation
through hierarchical NCPD. Here, we present this hierarchical
NCPD approach and demonstrate its efficacy on experiments
using synthetic and temporal document data sets.

Index Terms—hierarchical tensor decomposition, topic model-
ing, neural network, backpropagation

I. INTRODUCTION

The recent explosion in the collection and availability of
multi-modal tensor formatdata has led to an unprecedented
demand for scalable data analysis techniques [1]. The need to
reduce redundant dimensions (across modes) and to identify
meaningful latent trends within data has rightly become an
integral focus of research within signal processing and com-
puter science. An important application of these dimension-
reduction techniques is topic modeling, the task of identifying
latent topics and themes of a dataset in an unsupervised
or partially supervised approach. A popular topic modeling
approach for matrix data is the dimension-reduction tech-
nique nonnegative matrix factorization (NMF) [2], which is
generalized to multi-modal tensor data by the nonnegative
CP decomposition (NCPD) [3], [4]. These models identify r
latent topics within the data; here the rank r is a user-defined
parameter that can be challenging to select without a priori
knowledge or a heuristic selection procedure.

In topic modeling applications, one often additionally
wishes to understand the hierarchical topic structure (i.e., how
the topics are naturally related and combine into supertopics).
For matrices (tensors), a naive approach is to apply NMF
(NCPD) first with rank r and then again with rank j < r,

The authors are grateful to and were partially supported by NSF CAREER
DMS #1348721, NSF DMS #2011140 and NSF BIGDATA DMS #1740325.

and simply identify the j supertopics as linear (multilinear)
combinations of the original r subtopics. However, due to
the nonconvexity of the NMF (NCPD) objective function, the
supertopics identified in this way need not be linearly (multi-
linearly) related to the subtopics. For this reason, hierarchical
models that enforce these relationships between subtopics and
supertopics have become a popular direction of research. A
challenge of these models is that the nonconvexity of the
model at each level of hierarchy can yield cascading error
through the layers of models; several works have proposed
techniques for mitigating this cascade of error [5], [6], [7],
[8], [9].

In this work, we propose a hierarchical NCPD model and
Neural NCPD, a method for training this model that exploits
backpropagation techniques to mitigate the effects of error
introduced at earlier (subtopic) layers of hierarchy propagating
downstream to later (supertopic) layers. This approach allows
us to (1) explore the topics learned at different ranks simul-
taneously, and (2) illustrate the hierarchical relationship of
topics learned at different tensor decomposition ranks.
Notation. We follow the notational conventions of [10]; e.g.,
tensor X, matrix X , vector x, and (integer or real) scalar x.
In all models, we use variable r (with superscripts denoting
layer of hierarchical models) to denote model rank and use
j when indexing through rank-one components. In all tensor
decomposition models, we use k to denote the order (number
of modes) of the tensor and use i when indexing through
modes of the tensor. In all hierarchical models, we use L to
denote the number of layers in the model and use ` to index
layers. We let ⌦ denote the vector outer product and adopt
the CP decomposition notation

[[X1,X2, · · · ,Xk]] ⌘
rX

j=1

x
(1)
j ⌦ x

(2)
j ⌦ · · ·⌦ x

(k)
j , (1)

where x
(i)
j is the jth column of the ith factor matrix Xi [11].

Contributions. Our main contributions are two-fold. First, we
propose a novel hierarchical nonnegative tensor decomposition
model that we denote hierarchical NCPD (HNCPD). Our
model treats all tensor modes alike and the output is not

affected by the order of the modes in the tensor representation;
this is a property not shared by other hierarchical tensor de-
composition models such as that of [12]. Second, we propose
an effective neural network-inspired training method that we
call Neural NCPD. This method builds upon the Neural NMF
method proposed in [9], but is not a direct extension; Neural
NCPD consists of a branch of Neural NMF for each tensor
mode, but the backpropagation scheme must be adapted for
factorization information flow between branches.
Organization. In the remainder of Section I, we present
related work. In Section II, we present our main contributions,
HNCPD and the Neural NCPD method. In Section III, we test
Neural NCPD on real and synthetic data, and offer some brief
conclusions in Section IV.

A. Related Work

In this section, we introduce NMF, hierarchical NMF, the
Neural NMF method, and NCPD, and then summarize some
relevant work.
Nonnegative Matrix Factorization (NMF). Given a non-
negative matrix X 2 Rn1⇥n2

�0 , and a desired dimension
r 2 N, NMF seeks to decompose X into a product of
two low-dimensional nonnegative matrices; dictionary matrix
A 2 Rn1⇥r

�0 and representation matrix S 2 Rr⇥n2
�0 so that

X ⇡ AS =
rX

j=1

aj ⌦ sj , (2)

where aj is a column (topic) of A and sj is a row of S.
Typically, r is chosen such that r < min{n1, n2} to reduce the
dimension of the original data matrix or reveal latent themes
in the data. Each column of S provides the approximation of
the respective column in X in the lower-dimensional space
spanned by the columns of A. The nonnegativity of the NMF
factor matrices yields clear interpretability; thus, NMF has
found application in document clustering [13], [14], [15],
and image processing and computer vision [2], [16], [17],
amongst others. Popular training methods include multiplica-
tive updates [2], [18], [19], projected gradient descent [20],
and alternating least-squares [21], [22].
Hierarchical NMF (HNMF). HNMF seeks to illuminate
hierarchical structure by recursively factorizing the NMF S

matrices; see e.g., [1]. We first apply NMF with rank r(0) and
then apply NMF with rank r(1) to the S matrix, collecting
the r(0) subtopics into r(1) supertopics. HNMF with L layers
approximately factors the data matrix as

X ⇡ A
(0)

S
(0)

⇡ A
(0)

A
(1)

S
(1)

...

⇡ A
(0)

A
(1) · · ·A(L�1)

S
(L�1).

(3)

Here the A(i) matrix represents how the subtopics at layer
i collect into the supertopics at layer i + 1. Note that as

L increases, the error kX � A
(0)

A
(1) · · ·A(L�1)

S
(L�1)kF

necessarily increases as error propagates with each step. As a
result, significant error is introduced when L is large. Choosing
r(0), r(1), · · · , r(L�1) in practice proves difficult as the number
of possibilities grow combinatorially.
Neural NMF (NNMF). In the previous work of [9], the
authors developed an iterative method for training HNMF that
uses backpropagation techniques to mitigate cascading error
through the layers. To form this hierarchical factorization, the
Neural NMF method uses a neural net architecture. Each layer
` of the network has weight matrix A

(`). In the forward prop-
agation step, the network accepts a matrix S

(`�1), calculates
the nonnegative least-squares solution

S
(`) = q(A(`),S(`�1)) ⌘ argmin

S�0
kS(`�1) �A

(`)
SkF , (4)

and sends the matrix S
(`) to the next layer. In the backprop-

agation step, the method calculates gradients and updates the
weights of the network, which in this case are the A matrices.
Nonnegative CP Decomposition (NCPD). The NCPD gen-
eralizes NMF to higher-order tensors; specifically, given an
order-k tensor X 2 Rn1⇥n2⇥···⇥nk

�0 and a fixed integer r,
the approximate NCPD of X seeks X1 2 Rn1⇥r

�0 ,X2 2
Rn2⇥r

�0 , · · · ,Xk 2 Rnk⇥r
�0 so that

X ⇡ [[X1,X2, · · · ,Xk]]. (5)

The Xi matrices will be referred to as the NCPD factor
matrices. A nonnegative approximation with fixed r is ob-
tained by approximately minimizing the reconstruction error
between X and the NCPD reconstruction. This decomposition
has found numerous applications in the area of dynamic topic
modeling where one seeks to discover topic emergence and
evolution [23], [24], [25]. Methods for training NMF models
can often be generalized to NCPD; for example, multiplicative
updates [26] and alternating least-squares [27].
Other Related Work. Other works have sought to mitigate
error propagation in HNMF models with techniques inspired
by neural networks [6], [7], [8], [5]. Additionally, previous
works have developed hierarchical tensor decomposition mod-
els and methods [28], [29], [30]. The model most similar
to ours is that of [12], which we refer to as hierarchical
nonnegative tensor factorization (HNTF). This model consists
of a sequence of NCPDs, where a factor matrix for one mode is
held constant, the remaining factor matrices produce the tensor
that is decomposed at the second layer, and this decomposition
is combined with the fixed matrix from the previous layer. We
note that, unlike our HNCPD model, HNTF is dependent upon
the ordering of the modes, and specifically which data mode
appears first in the representation of the tensor. We refer to
‘HNTF-i‘ as HNTF applied to the representation of the tensor
where the modes are reordered with mode i first.

𝗫
𝘟1

𝘟2
T

𝘟3

≅
𝘯1

𝘯3 𝘯2

𝘯1

𝘯2

𝘯3

𝘳

≅
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Hierarchical Nonnegative CP Decomposition (HNCPD)

Apply a hierarchical NMF onto each factor matrix: 
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Neural Nonnegative CP Decomposition (Neural NCPD)
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Synthetic Tensor Data Set Experiments
• CP rank seven tensor of size 40 × 40 × 40 
• Overlapping and non-overlapping blocks of 

varying size and intensity to form a hierarchical 
structure

• Positive random noise added to each entry
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Synthetic Tensor Data Set Experiments

TABLE I: Topic modeling loss and relative reconstruction loss, Crel, on the synthetic dataset for Neural NCPD, Standard
HNCPD, HNTF, Neural NMF, and Standard HNMF with two levels of noise over 10 trials. For HNTF we report runs on three
re-orderings of the modes the tensor, and for matrix methods we report results for flattening along each mode of the tensor.

Topic Modeling Loss Relative Reconstruction Loss
�2 = 0.1 �2 = 0.4 �2 = 0.1 �2 = 0.4

Method Mode 7 � 2 7 � 4 4 � 2 7 � 2 7 � 4 4 � 2 r = 7 r(0) = 4 r(1) = 2 r = 7 r(0) = 4 r(1) = 2
Neural HNCPD 0.043 0.042 0.042 0.087 0.087 0.081 0.119 0.252 0.563 0.454 0.508 0.714
Standard HNCPD 0.106 0.101 0.189 0.145 0.193 0.204 0.119 0.494 0.828 0.454 0.612 0.892

1 0.163 0.236 0.182 0.171 0.144 0.170 0.119 0.502 0.795 0.454 0.576 0.781
HNTF [12] 2 0.087 0.040 0.101 0.090 0.116 0.142 0.119 0.309 0.665 0.454 0.587 0.765

3 0.078 0.122 0.106 0.084 0.111 0.164 0.119 0.417 0.713 0.454 0.560 0.747
1 0.154 0.192 0.105 0.169 0.219 0.127 0.146 0.268 0.593 0.478 0.521 0.705

Neural NMF [9] 2 0.075 0.244 0.146 0.153 0.190 0.160 0.141 0.289 0.585 0.475 0.513 0.710
3 0.119 0.164 0.110 0.158 0.197 0.140 0.151 0.236 0.576 0.477 0.512 0.693
1 0.098 0.182 0.052 0.164 0.219 0.139 0.118 0.235 0.558 0.472 0.524 0.707

Standard HNMF 2 0.080 0.199 0.090 0.151 0.213 0.088 0.118 0.245 0.566 0.472 0.505 0.709
3 0.060 0.165 0.085 0.137 0.193 0.114 0.118 0.233 0.563 0.472 0.503 0.717

blocks with value 3, which meet at one edge, so that each
of these tubes matches the shape of the blocks that contain it
in one of the three modes. We display a partial visualization
of this tensor with two levels of noise at the left of Figure 2;
here we plot projections of all tensors (and all approximations)
along the third mode; that is, we construct a matrix with entries
equal to the largest entries of the mode-three fibers (see e.g.,
[11] for relevant definitions). For our synthetic tensor, the
two top left yellow blocks in this projection hide the true
structure of this figure, illustrating how construction of the
tensor obscures topic structure from matrix-based methods.

We add comparisons to Hierarchical NMF methods by
applying these methods to each of the three possible flattenings
of the tensor into a matrix along each of the three modes, as
described in [11]. The synthetic data tensor was constructed
in such a way that for each flattening along a given mode,
a part of the hierarchical structure is obscured. Specifically,
each of the three flattened tensors have matrix rank 6, whereas
the original tensor has CP rank 7. Thus, we expect that
HNMF methods applied to these matrices would produce an
incomplete hierarchical structure, even if they can approximate
the matrices with low reconstruction loss. We compare to
Neural NMF and Standard HNMF, in which we do not update
previous layer factorizations.

To evaluate the topic models produced by each method,
we introduce a metric that we refer to as topic error. Given
a matrix Mtrue 2 Rr(i)⇥r(j) that represents the underlying
hierarchical relationship between the r(i) subtopics and the
r(j) supertopics, and a matrix Mpred 2 Rr(i)⇥r(j) produced
by the HNCPD or HNMF method, our topic error measures
the difference between these matrices subject to permutation
of rows and columns. We normalize the rows of Mtrue and
Mpred and interpret each row i as the association and learned
association, respectively, between subtopic i and each of the
supertopics at rank r(j). Because the model approximations
are constant under identical row and column permutations of

successive layer factor matrices, we define the error as

1� 1

r(i)
min

P12S
r(i)

,P22S
r(j)

kMtrue � P1MpredP2k1 (18)

which penalizes deviation of rows of P1MpredP2 from those
of Mtrue. For Neural NCPD and Standard HNCPD, we use
the matrices S

(1), S
(0), and A

(1). As we do not introduce
notation for HNTF due to space constraints, we simply note
that we compare to the same topic modeling metric applied to
factor matrices learned by this model. For Neural NMF and
Standard HNMF, we use A2, A1, and A1A2.

We run Neural NCPD, Standard HNCPD, HNTF, Neural
NMF, and Standard HNMF on this synthetic dataset with two
different levels of noise added and with three layers with ranks
7, 4, and 2, and display the results in Figure 2 and Table
I; we present the relative reconstruction loss Crel = kX �
[[fX1, fX2, · · · , fXk]]kF /kXkF , as well as topic modelling loss
between every two layers. For each level of noise, we display
the rank 7 approximation shared by all the NCPD methods,
and the rank 4 and rank 2 approximations produced by Neural
NCPD, Standard HNCPD, and HNTF. We also display the
corresponding topic modelling matrices used in calculating the
topic modelling loss for each method. For each of the topic
modelling matrices, we normalize along the small dimension
in order to interprate the matrices as probabilities that each
subtopic is associated to each of the supertopics.

From Table I, we see that the the topic modelling loss for
Neural NCPD is less than that of every other NCPD and NMF
model for all but one level of noise and pair of ranks, and the
reconstruction loss for Neural NCPD is no more than that of
Standard HNCPD and HNTF at each rank and level of noise.
As expected, though the NMF models produced, in most cases,
lower reconstruction loss than the NCPD methods, they did
not produced lower topic modeling loss than Neural NCPD,
suggesting that the improved reconstruction provided by NMF
comes at the cost of topic interpretability.
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Synthetic Tensor Data Set Experiments

TABLE I: Topic modeling loss and relative reconstruction loss, Crel, on the synthetic dataset for Neural NCPD, Standard
HNCPD, HNTF, Neural NMF, and Standard HNMF with two levels of noise over 10 trials. For HNTF we report runs on three
re-orderings of the modes the tensor, and for matrix methods we report results for flattening along each mode of the tensor.

Topic Modeling Loss Relative Reconstruction Loss
�2 = 0.1 �2 = 0.4 �2 = 0.1 �2 = 0.4

Method Mode 7 � 2 7 � 4 4 � 2 7 � 2 7 � 4 4 � 2 r = 7 r(0) = 4 r(1) = 2 r = 7 r(0) = 4 r(1) = 2
Neural HNCPD 0.043 0.042 0.042 0.087 0.087 0.081 0.119 0.252 0.563 0.454 0.508 0.714
Standard HNCPD 0.106 0.101 0.189 0.145 0.193 0.204 0.119 0.494 0.828 0.454 0.612 0.892

1 0.163 0.236 0.182 0.171 0.144 0.170 0.119 0.502 0.795 0.454 0.576 0.781
HNTF [12] 2 0.087 0.040 0.101 0.090 0.116 0.142 0.119 0.309 0.665 0.454 0.587 0.765

3 0.078 0.122 0.106 0.084 0.111 0.164 0.119 0.417 0.713 0.454 0.560 0.747
1 0.154 0.192 0.105 0.169 0.219 0.127 0.146 0.268 0.593 0.478 0.521 0.705

Neural NMF [9] 2 0.075 0.244 0.146 0.153 0.190 0.160 0.141 0.289 0.585 0.475 0.513 0.710
3 0.119 0.164 0.110 0.158 0.197 0.140 0.151 0.236 0.576 0.477 0.512 0.693
1 0.098 0.182 0.052 0.164 0.219 0.139 0.118 0.235 0.558 0.472 0.524 0.707

Standard HNMF 2 0.080 0.199 0.090 0.151 0.213 0.088 0.118 0.245 0.566 0.472 0.505 0.709
3 0.060 0.165 0.085 0.137 0.193 0.114 0.118 0.233 0.563 0.472 0.503 0.717

blocks with value 3, which meet at one edge, so that each
of these tubes matches the shape of the blocks that contain it
in one of the three modes. We display a partial visualization
of this tensor with two levels of noise at the left of Figure 2;
here we plot projections of all tensors (and all approximations)
along the third mode; that is, we construct a matrix with entries
equal to the largest entries of the mode-three fibers (see e.g.,
[11] for relevant definitions). For our synthetic tensor, the
two top left yellow blocks in this projection hide the true
structure of this figure, illustrating how construction of the
tensor obscures topic structure from matrix-based methods.

We add comparisons to Hierarchical NMF methods by
applying these methods to each of the three possible flattenings
of the tensor into a matrix along each of the three modes, as
described in [11]. The synthetic data tensor was constructed
in such a way that for each flattening along a given mode,
a part of the hierarchical structure is obscured. Specifically,
each of the three flattened tensors have matrix rank 6, whereas
the original tensor has CP rank 7. Thus, we expect that
HNMF methods applied to these matrices would produce an
incomplete hierarchical structure, even if they can approximate
the matrices with low reconstruction loss. We compare to
Neural NMF and Standard HNMF, in which we do not update
previous layer factorizations.

To evaluate the topic models produced by each method,
we introduce a metric that we refer to as topic error. Given
a matrix Mtrue 2 Rr(i)⇥r(j) that represents the underlying
hierarchical relationship between the r(i) subtopics and the
r(j) supertopics, and a matrix Mpred 2 Rr(i)⇥r(j) produced
by the HNCPD or HNMF method, our topic error measures
the difference between these matrices subject to permutation
of rows and columns. We normalize the rows of Mtrue and
Mpred and interpret each row i as the association and learned
association, respectively, between subtopic i and each of the
supertopics at rank r(j). Because the model approximations
are constant under identical row and column permutations of

successive layer factor matrices, we define the error as

1� 1

r(i)
min

P12S
r(i)

,P22S
r(j)

kMtrue � P1MpredP2k1 (18)

which penalizes deviation of rows of P1MpredP2 from those
of Mtrue. For Neural NCPD and Standard HNCPD, we use
the matrices S

(1), S
(0), and A

(1). As we do not introduce
notation for HNTF due to space constraints, we simply note
that we compare to the same topic modeling metric applied to
factor matrices learned by this model. For Neural NMF and
Standard HNMF, we use A2, A1, and A1A2.

We run Neural NCPD, Standard HNCPD, HNTF, Neural
NMF, and Standard HNMF on this synthetic dataset with two
different levels of noise added and with three layers with ranks
7, 4, and 2, and display the results in Figure 2 and Table
I; we present the relative reconstruction loss Crel = kX �
[[fX1, fX2, · · · , fXk]]kF /kXkF , as well as topic modelling loss
between every two layers. For each level of noise, we display
the rank 7 approximation shared by all the NCPD methods,
and the rank 4 and rank 2 approximations produced by Neural
NCPD, Standard HNCPD, and HNTF. We also display the
corresponding topic modelling matrices used in calculating the
topic modelling loss for each method. For each of the topic
modelling matrices, we normalize along the small dimension
in order to interprate the matrices as probabilities that each
subtopic is associated to each of the supertopics.

From Table I, we see that the the topic modelling loss for
Neural NCPD is less than that of every other NCPD and NMF
model for all but one level of noise and pair of ranks, and the
reconstruction loss for Neural NCPD is no more than that of
Standard HNCPD and HNTF at each rank and level of noise.
As expected, though the NMF models produced, in most cases,
lower reconstruction loss than the NCPD methods, they did
not produced lower topic modeling loss than Neural NCPD,
suggesting that the improved reconstruction provided by NMF
comes at the cost of topic interpretability.
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TABLE I: Topic modeling loss and relative reconstruction loss, Crel, on the synthetic dataset for Neural NCPD, Standard
HNCPD, HNTF, Neural NMF, and Standard HNMF with two levels of noise over 10 trials. For HNTF we report runs on three
re-orderings of the modes the tensor, and for matrix methods we report results for flattening along each mode of the tensor.

Topic Modeling Loss Relative Reconstruction Loss
�2 = 0.1 �2 = 0.4 �2 = 0.1 �2 = 0.4

Method Mode 7 � 2 7 � 4 4 � 2 7 � 2 7 � 4 4 � 2 r = 7 r(0) = 4 r(1) = 2 r = 7 r(0) = 4 r(1) = 2
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1 0.163 0.236 0.182 0.171 0.144 0.170 0.119 0.502 0.795 0.454 0.576 0.781
HNTF [12] 2 0.087 0.040 0.101 0.090 0.116 0.142 0.119 0.309 0.665 0.454 0.587 0.765

3 0.078 0.122 0.106 0.084 0.111 0.164 0.119 0.417 0.713 0.454 0.560 0.747
1 0.154 0.192 0.105 0.169 0.219 0.127 0.146 0.268 0.593 0.478 0.521 0.705
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1 0.098 0.182 0.052 0.164 0.219 0.139 0.118 0.235 0.558 0.472 0.524 0.707

Standard HNMF 2 0.080 0.199 0.090 0.151 0.213 0.088 0.118 0.245 0.566 0.472 0.505 0.709
3 0.060 0.165 0.085 0.137 0.193 0.114 0.118 0.233 0.563 0.472 0.503 0.717

blocks with value 3, which meet at one edge, so that each
of these tubes matches the shape of the blocks that contain it
in one of the three modes. We display a partial visualization
of this tensor with two levels of noise at the left of Figure 2;
here we plot projections of all tensors (and all approximations)
along the third mode; that is, we construct a matrix with entries
equal to the largest entries of the mode-three fibers (see e.g.,
[11] for relevant definitions). For our synthetic tensor, the
two top left yellow blocks in this projection hide the true
structure of this figure, illustrating how construction of the
tensor obscures topic structure from matrix-based methods.

We add comparisons to Hierarchical NMF methods by
applying these methods to each of the three possible flattenings
of the tensor into a matrix along each of the three modes, as
described in [11]. The synthetic data tensor was constructed
in such a way that for each flattening along a given mode,
a part of the hierarchical structure is obscured. Specifically,
each of the three flattened tensors have matrix rank 6, whereas
the original tensor has CP rank 7. Thus, we expect that
HNMF methods applied to these matrices would produce an
incomplete hierarchical structure, even if they can approximate
the matrices with low reconstruction loss. We compare to
Neural NMF and Standard HNMF, in which we do not update
previous layer factorizations.

To evaluate the topic models produced by each method,
we introduce a metric that we refer to as topic error. Given
a matrix Mtrue 2 Rr(i)⇥r(j) that represents the underlying
hierarchical relationship between the r(i) subtopics and the
r(j) supertopics, and a matrix Mpred 2 Rr(i)⇥r(j) produced
by the HNCPD or HNMF method, our topic error measures
the difference between these matrices subject to permutation
of rows and columns. We normalize the rows of Mtrue and
Mpred and interpret each row i as the association and learned
association, respectively, between subtopic i and each of the
supertopics at rank r(j). Because the model approximations
are constant under identical row and column permutations of

successive layer factor matrices, we define the error as

1� 1

r(i)
min

P12S
r(i)

,P22S
r(j)

kMtrue � P1MpredP2k1 (18)

which penalizes deviation of rows of P1MpredP2 from those
of Mtrue. For Neural NCPD and Standard HNCPD, we use
the matrices S

(1), S
(0), and A

(1). As we do not introduce
notation for HNTF due to space constraints, we simply note
that we compare to the same topic modeling metric applied to
factor matrices learned by this model. For Neural NMF and
Standard HNMF, we use A2, A1, and A1A2.

We run Neural NCPD, Standard HNCPD, HNTF, Neural
NMF, and Standard HNMF on this synthetic dataset with two
different levels of noise added and with three layers with ranks
7, 4, and 2, and display the results in Figure 2 and Table
I; we present the relative reconstruction loss Crel = kX �
[[fX1, fX2, · · · , fXk]]kF /kXkF , as well as topic modelling loss
between every two layers. For each level of noise, we display
the rank 7 approximation shared by all the NCPD methods,
and the rank 4 and rank 2 approximations produced by Neural
NCPD, Standard HNCPD, and HNTF. We also display the
corresponding topic modelling matrices used in calculating the
topic modelling loss for each method. For each of the topic
modelling matrices, we normalize along the small dimension
in order to interprate the matrices as probabilities that each
subtopic is associated to each of the supertopics.

From Table I, we see that the the topic modelling loss for
Neural NCPD is less than that of every other NCPD and NMF
model for all but one level of noise and pair of ranks, and the
reconstruction loss for Neural NCPD is no more than that of
Standard HNCPD and HNTF at each rank and level of noise.
As expected, though the NMF models produced, in most cases,
lower reconstruction loss than the NCPD methods, they did
not produced lower topic modeling loss than Neural NCPD,
suggesting that the improved reconstruction provided by NMF
comes at the cost of topic interpretability.
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Fig. 2: (Top left) Data tensor X with two levels of noise. (Top right) ranks 7, 5, and 3 Neural NCPD, Standard HNCPD,
and HNTF approximations of X. (Bottom left) Underlying topic modelling matrix. (Bottom right) topic modelling matrices
discovered by Neural NCPD, Standard HNCPD, and HNTF, with rows and columns permuted to minimize topic error.

B. Temporal Document Analysis

We next apply Neural NCPD to a dataset of tweets from four
Republican [R] and four Democratic [D] 2016 presidential
primary candidates, (1) Hillary Clinton [D], (2) Tim Kaine
[D], (3) Martin O’Malley [D], (4) Bernie Sanders [D], (5)
Ted Cruz [R], (6) John Kasich [R], (7) Marco Rubio [R], and
(8) Donald Trump [R]; this is constructed from a subset of
the dataset of [34]. We use a bag-of-words (12,721 words in
corpus) representation of all tweets made by a candidate within
bins of 30 days (from February to December 2016), and cap
each of these groups at 100 tweets to avoid oversampling from
any candidate; resulting in a tensor of size 8⇥ 10⇥ 12721.

In Table II, we display the relative reconstruction loss on
the Twitter political dataset for all models. We see that Neural
NCPD significantly outperforms Standard HNCPD, slightly
outperforms Standard NCPD while additionally producing a
hierarchical topic structure, and outperforms all HNTF-i, for
which loss varies significantly based on the arrangement of the
tensor. In Figure 3, we show the topic keywords and factor ma-
trices of a rank 8, 4, and 2 hierarchical NCPD approximation
computed by Neural NCPD. Note that in the rank 8 candidates
mode factor and keywords we see that nearly every topic is

TABLE II: Relative reconstruction loss, Crel, on the Twitter
political dataset for Neural NCPD, Standard NCPD, Standard
HNCPD, and HNTF at ranks r = 8, r(0) = 4, and r(1) =
8. For HNTF we display the loss given the three possible
arrangements of the tensor.

Method r = 8 r(0) = 4 r(1) = 2
Neural NCPD 0.834 0.883 0.918

Standard NCPD 0.834 0.889 0.919
Standard HNCPD 0.834 0.931 0.950

HNTF-1 [12] 0.834 0.890 0.927
HNTF-2 [12] 0.834 0.909 0.956
HNTF-3 [12] 0.834 0.895 0.942

identified with a single candidate. Topic two of the rank 8
approximation aligns with political issues (the Zika virus and
the Venezuelan government) rather than a single candidate,
and is temporally most present in May to July 2016 (during
the Zika outbreak and the Venezualan state of emergency).
Topics one and eight, corresponding to candidates Clinton and
Trump, are most present in the months immediately leading up
to the election. At rank 4, we see that topics one and four are
inherited from the rank 8 approximation, topic two combines
the rank 8 topics of candidates Trump and Clinton (final

September 29, 2021 16
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Fig. 2: (Top left) Data tensor X with two levels of noise. (Top right) ranks 7, 5, and 3 Neural NCPD, Standard HNCPD,
and HNTF approximations of X. (Bottom left) Underlying topic modelling matrix. (Bottom right) topic modelling matrices
discovered by Neural NCPD, Standard HNCPD, and HNTF, with rows and columns permuted to minimize topic error.

B. Temporal Document Analysis

We next apply Neural NCPD to a dataset of tweets from four
Republican [R] and four Democratic [D] 2016 presidential
primary candidates, (1) Hillary Clinton [D], (2) Tim Kaine
[D], (3) Martin O’Malley [D], (4) Bernie Sanders [D], (5)
Ted Cruz [R], (6) John Kasich [R], (7) Marco Rubio [R], and
(8) Donald Trump [R]; this is constructed from a subset of
the dataset of [34]. We use a bag-of-words (12,721 words in
corpus) representation of all tweets made by a candidate within
bins of 30 days (from February to December 2016), and cap
each of these groups at 100 tweets to avoid oversampling from
any candidate; resulting in a tensor of size 8⇥ 10⇥ 12721.

In Table II, we display the relative reconstruction loss on
the Twitter political dataset for all models. We see that Neural
NCPD significantly outperforms Standard HNCPD, slightly
outperforms Standard NCPD while additionally producing a
hierarchical topic structure, and outperforms all HNTF-i, for
which loss varies significantly based on the arrangement of the
tensor. In Figure 3, we show the topic keywords and factor ma-
trices of a rank 8, 4, and 2 hierarchical NCPD approximation
computed by Neural NCPD. Note that in the rank 8 candidates
mode factor and keywords we see that nearly every topic is

TABLE II: Relative reconstruction loss, Crel, on the Twitter
political dataset for Neural NCPD, Standard NCPD, Standard
HNCPD, and HNTF at ranks r = 8, r(0) = 4, and r(1) =
8. For HNTF we display the loss given the three possible
arrangements of the tensor.

Method r = 8 r(0) = 4 r(1) = 2
Neural NCPD 0.834 0.883 0.918

Standard NCPD 0.834 0.889 0.919
Standard HNCPD 0.834 0.931 0.950

HNTF-1 [12] 0.834 0.890 0.927
HNTF-2 [12] 0.834 0.909 0.956
HNTF-3 [12] 0.834 0.895 0.942

identified with a single candidate. Topic two of the rank 8
approximation aligns with political issues (the Zika virus and
the Venezuelan government) rather than a single candidate,
and is temporally most present in May to July 2016 (during
the Zika outbreak and the Venezualan state of emergency).
Topics one and eight, corresponding to candidates Clinton and
Trump, are most present in the months immediately leading up
to the election. At rank 4, we see that topics one and four are
inherited from the rank 8 approximation, topic two combines
the rank 8 topics of candidates Trump and Clinton (final
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Fig. 2: (Top left) Data tensor X with two levels of noise. (Top right) ranks 7, 5, and 3 Neural NCPD, Standard HNCPD,
and HNTF approximations of X. (Bottom left) Underlying topic modelling matrix. (Bottom right) topic modelling matrices
discovered by Neural NCPD, Standard HNCPD, and HNTF, with rows and columns permuted to minimize topic error.

B. Temporal Document Analysis

We next apply Neural NCPD to a dataset of tweets from four
Republican [R] and four Democratic [D] 2016 presidential
primary candidates, (1) Hillary Clinton [D], (2) Tim Kaine
[D], (3) Martin O’Malley [D], (4) Bernie Sanders [D], (5)
Ted Cruz [R], (6) John Kasich [R], (7) Marco Rubio [R], and
(8) Donald Trump [R]; this is constructed from a subset of
the dataset of [34]. We use a bag-of-words (12,721 words in
corpus) representation of all tweets made by a candidate within
bins of 30 days (from February to December 2016), and cap
each of these groups at 100 tweets to avoid oversampling from
any candidate; resulting in a tensor of size 8⇥ 10⇥ 12721.

In Table II, we display the relative reconstruction loss on
the Twitter political dataset for all models. We see that Neural
NCPD significantly outperforms Standard HNCPD, slightly
outperforms Standard NCPD while additionally producing a
hierarchical topic structure, and outperforms all HNTF-i, for
which loss varies significantly based on the arrangement of the
tensor. In Figure 3, we show the topic keywords and factor ma-
trices of a rank 8, 4, and 2 hierarchical NCPD approximation
computed by Neural NCPD. Note that in the rank 8 candidates
mode factor and keywords we see that nearly every topic is

TABLE II: Relative reconstruction loss, Crel, on the Twitter
political dataset for Neural NCPD, Standard NCPD, Standard
HNCPD, and HNTF at ranks r = 8, r(0) = 4, and r(1) =
8. For HNTF we display the loss given the three possible
arrangements of the tensor.

Method r = 8 r(0) = 4 r(1) = 2
Neural NCPD 0.834 0.883 0.918

Standard NCPD 0.834 0.889 0.919
Standard HNCPD 0.834 0.931 0.950

HNTF-1 [12] 0.834 0.890 0.927
HNTF-2 [12] 0.834 0.909 0.956
HNTF-3 [12] 0.834 0.895 0.942

identified with a single candidate. Topic two of the rank 8
approximation aligns with political issues (the Zika virus and
the Venezuelan government) rather than a single candidate,
and is temporally most present in May to July 2016 (during
the Zika outbreak and the Venezualan state of emergency).
Topics one and eight, corresponding to candidates Clinton and
Trump, are most present in the months immediately leading up
to the election. At rank 4, we see that topics one and four are
inherited from the rank 8 approximation, topic two combines
the rank 8 topics of candidates Trump and Clinton (final
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and HNTF approximations of X. (Bottom left) Underlying topic modelling matrix. (Bottom right) topic modelling matrices
discovered by Neural NCPD, Standard HNCPD, and HNTF, with rows and columns permuted to minimize topic error.

B. Temporal Document Analysis

We next apply Neural NCPD to a dataset of tweets from four
Republican [R] and four Democratic [D] 2016 presidential
primary candidates, (1) Hillary Clinton [D], (2) Tim Kaine
[D], (3) Martin O’Malley [D], (4) Bernie Sanders [D], (5)
Ted Cruz [R], (6) John Kasich [R], (7) Marco Rubio [R], and
(8) Donald Trump [R]; this is constructed from a subset of
the dataset of [34]. We use a bag-of-words (12,721 words in
corpus) representation of all tweets made by a candidate within
bins of 30 days (from February to December 2016), and cap
each of these groups at 100 tweets to avoid oversampling from
any candidate; resulting in a tensor of size 8⇥ 10⇥ 12721.

In Table II, we display the relative reconstruction loss on
the Twitter political dataset for all models. We see that Neural
NCPD significantly outperforms Standard HNCPD, slightly
outperforms Standard NCPD while additionally producing a
hierarchical topic structure, and outperforms all HNTF-i, for
which loss varies significantly based on the arrangement of the
tensor. In Figure 3, we show the topic keywords and factor ma-
trices of a rank 8, 4, and 2 hierarchical NCPD approximation
computed by Neural NCPD. Note that in the rank 8 candidates
mode factor and keywords we see that nearly every topic is

TABLE II: Relative reconstruction loss, Crel, on the Twitter
political dataset for Neural NCPD, Standard NCPD, Standard
HNCPD, and HNTF at ranks r = 8, r(0) = 4, and r(1) =
8. For HNTF we display the loss given the three possible
arrangements of the tensor.

Method r = 8 r(0) = 4 r(1) = 2
Neural NCPD 0.834 0.883 0.918

Standard NCPD 0.834 0.889 0.919
Standard HNCPD 0.834 0.931 0.950

HNTF-1 [12] 0.834 0.890 0.927
HNTF-2 [12] 0.834 0.909 0.956
HNTF-3 [12] 0.834 0.895 0.942

identified with a single candidate. Topic two of the rank 8
approximation aligns with political issues (the Zika virus and
the Venezuelan government) rather than a single candidate,
and is temporally most present in May to July 2016 (during
the Zika outbreak and the Venezualan state of emergency).
Topics one and eight, corresponding to candidates Clinton and
Trump, are most present in the months immediately leading up
to the election. At rank 4, we see that topics one and four are
inherited from the rank 8 approximation, topic two combines
the rank 8 topics of candidates Trump and Clinton (final
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Fig. 2: (Top left) Data tensor X with two levels of noise. (Top right) ranks 7, 5, and 3 Neural NCPD, Standard HNCPD,
and HNTF approximations of X. (Bottom left) Underlying topic modelling matrix. (Bottom right) topic modelling matrices
discovered by Neural NCPD, Standard HNCPD, and HNTF, with rows and columns permuted to minimize topic error.

B. Temporal Document Analysis

We next apply Neural NCPD to a dataset of tweets from four
Republican [R] and four Democratic [D] 2016 presidential
primary candidates, (1) Hillary Clinton [D], (2) Tim Kaine
[D], (3) Martin O’Malley [D], (4) Bernie Sanders [D], (5)
Ted Cruz [R], (6) John Kasich [R], (7) Marco Rubio [R], and
(8) Donald Trump [R]; this is constructed from a subset of
the dataset of [34]. We use a bag-of-words (12,721 words in
corpus) representation of all tweets made by a candidate within
bins of 30 days (from February to December 2016), and cap
each of these groups at 100 tweets to avoid oversampling from
any candidate; resulting in a tensor of size 8⇥ 10⇥ 12721.

In Table II, we display the relative reconstruction loss on
the Twitter political dataset for all models. We see that Neural
NCPD significantly outperforms Standard HNCPD, slightly
outperforms Standard NCPD while additionally producing a
hierarchical topic structure, and outperforms all HNTF-i, for
which loss varies significantly based on the arrangement of the
tensor. In Figure 3, we show the topic keywords and factor ma-
trices of a rank 8, 4, and 2 hierarchical NCPD approximation
computed by Neural NCPD. Note that in the rank 8 candidates
mode factor and keywords we see that nearly every topic is

TABLE II: Relative reconstruction loss, Crel, on the Twitter
political dataset for Neural NCPD, Standard NCPD, Standard
HNCPD, and HNTF at ranks r = 8, r(0) = 4, and r(1) =
8. For HNTF we display the loss given the three possible
arrangements of the tensor.

Method r = 8 r(0) = 4 r(1) = 2
Neural NCPD 0.834 0.883 0.918

Standard NCPD 0.834 0.889 0.919
Standard HNCPD 0.834 0.931 0.950

HNTF-1 [12] 0.834 0.890 0.927
HNTF-2 [12] 0.834 0.909 0.956
HNTF-3 [12] 0.834 0.895 0.942

identified with a single candidate. Topic two of the rank 8
approximation aligns with political issues (the Zika virus and
the Venezuelan government) rather than a single candidate,
and is temporally most present in May to July 2016 (during
the Zika outbreak and the Venezualan state of emergency).
Topics one and eight, corresponding to candidates Clinton and
Trump, are most present in the months immediately leading up
to the election. At rank 4, we see that topics one and four are
inherited from the rank 8 approximation, topic two combines
the rank 8 topics of candidates Trump and Clinton (final



Mathematics

Neural Nonnegative CP Decomposition for Hierarchical Tensor Analysis September 29, 2021 21

Twitter Political Data Set

• A data set of tweets sent by political candidates during the 2016 election season
• We subset the tweets from eight politicians, four Republicans and four Democrats: 

Hillary Clinton, Tim Kaine, Martin O'Malley, Bernie Sanders, Ted Cruz, John Kasich, 
Marco Rubio, and Donald Trump.

J. Littman, L. Wrubel, and D. Kerchner, “2016 United States Presidential Election Tweet Ids,” 2016.
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Twitter Political Data Set

• We use a bag-of-words (12,721 words in corpus) representation of all tweets made by 
a candidate 

• We bin all tweets made by a candidate each 30 days (from Feb to Dec 2016)
• Resulting tensor is size

J. Littman, L. Wrubel, and D. Kerchner, “2016 United States Presidential Election Tweet Ids,” 2016.

8    × 10    × 12721

# Candidates # Months # Words
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Neural NCPD in Twitter Political Data Set



Mathematics

Neural Nonnegative CP Decomposition for Hierarchical Tensor Analysis September 29, 2021 24

Neural NCPD in Twitter Political Data Set
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Standard NCPD in Twitter Political Data Set

Clinton and Kasich 
in separate topics

Clinton and Kasich 
in the same topics
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Twitter Political Data Set Numerical Results

Original Rank 7
Neural NCPD Standard HNCPD

Rank 4 Rank 2 Rank 4 Rank 2
HNTF

Rank 4 Rank 2

7 - 2 7 - 4 4 - 2 7 - 2 7 - 4 4 - 2 7 - 2 7 - 4 4 - 27 - 2 7 - 4 4 - 2
Underlying Model Neural NCPD Standard HNCPD HNTF
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Fig. 2: (Top left) Data tensor X with two levels of noise. (Top right) ranks 7, 5, and 3 Neural NCPD, Standard HNCPD,
and HNTF approximations of X. (Bottom left) Underlying topic modelling matrix. (Bottom right) topic modelling matrices
discovered by Neural NCPD, Standard HNCPD, and HNTF, with rows and columns permuted to minimize topic error.

B. Temporal Document Analysis

We next apply Neural NCPD to a dataset of tweets from four
Republican [R] and four Democratic [D] 2016 presidential
primary candidates, (1) Hillary Clinton [D], (2) Tim Kaine
[D], (3) Martin O’Malley [D], (4) Bernie Sanders [D], (5)
Ted Cruz [R], (6) John Kasich [R], (7) Marco Rubio [R], and
(8) Donald Trump [R]; this is constructed from a subset of
the dataset of [34]. We use a bag-of-words (12,721 words in
corpus) representation of all tweets made by a candidate within
bins of 30 days (from February to December 2016), and cap
each of these groups at 100 tweets to avoid oversampling from
any candidate; resulting in a tensor of size 8⇥ 10⇥ 12721.

In Table II, we display the relative reconstruction loss on
the Twitter political dataset for all models. We see that Neural
NCPD significantly outperforms Standard HNCPD, slightly
outperforms Standard NCPD while additionally producing a
hierarchical topic structure, and outperforms all HNTF-i, for
which loss varies significantly based on the arrangement of the
tensor. In Figure 3, we show the topic keywords and factor ma-
trices of a rank 8, 4, and 2 hierarchical NCPD approximation
computed by Neural NCPD. Note that in the rank 8 candidates
mode factor and keywords we see that nearly every topic is

TABLE II: Relative reconstruction loss, Crel, on the Twitter
political dataset for Neural NCPD, Standard NCPD, Standard
HNCPD, and HNTF at ranks r = 8, r(0) = 4, and r(1) =
8. For HNTF we display the loss given the three possible
arrangements of the tensor.

Method r = 8 r(0) = 4 r(1) = 2
Neural NCPD 0.834 0.883 0.918

Standard NCPD 0.834 0.889 0.919
Standard HNCPD 0.834 0.931 0.950

HNTF-1 [12] 0.834 0.890 0.927
HNTF-2 [12] 0.834 0.909 0.956
HNTF-3 [12] 0.834 0.895 0.942

identified with a single candidate. Topic two of the rank 8
approximation aligns with political issues (the Zika virus and
the Venezuelan government) rather than a single candidate,
and is temporally most present in May to July 2016 (during
the Zika outbreak and the Venezualan state of emergency).
Topics one and eight, corresponding to candidates Clinton and
Trump, are most present in the months immediately leading up
to the election. At rank 4, we see that topics one and four are
inherited from the rank 8 approximation, topic two combines
the rank 8 topics of candidates Trump and Clinton (final
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