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Background

I Nonnegative Matrix Factorization (NMF) is an approach typically applied in unsupervised tasks such as dimensionality-reduction,
latent topic modeling, and clustering.

I Given nonnegative data matrix X ∈m×n≥0 and a user-defined target dimension r ∈ Î, NMF seeks nonnegative factor matrices A ∈m×r≥0 ,
and S ∈r×n≥0 such that X ≈ AS, formulated as

arg min
A≥0,S≥0

‖X − AS‖2F . (1)

I Nonnegative CP Decomposition (NCPD) generalizes NMF to multi-model tensor data.
I Given nonnegative data tensor X ∈ Òn1×...×nk and a user-defined target dimension r ∈ Î, NCPD seeks nonnegative factor matrices

X1, X2, . . . , Xk where Xi ∈ni×r≥0 such that X ≈ [[X1, X2, · · · , Xk]] ≡
r∑
j=1
x(1)j ⊗ x

(2)
j ⊗ · · · ⊗ x

(k)
j , where x(i)j is the jth column of Xi.

Method

I Given a nonnegative order-k tensor X ∈ Òn1×...×nk, Hierarchical NCPD (HNCPD) consists of an initial rank-r NCPD layer with factor
matrices X1, X2, . . . , Xk, each with r columns, and an HNMF with ranks r(0), r(1), · · · , r(L−2) for each of these factors matrices.

I For each Xi at layer ` , we factorize Xi as

Xi ≈ X̃i ≡ A(0)i A(1)i ...A
(`−2)
i S(`−2)

i . (2)

I We propose Neural NCPD, a method for training an HNCPD model by representing the model with a neural network architecture.
I Our iterative method consists of two subroutines, a forward-propagation and a backpropagation. In Algorithms 1 and 2, we display

the pseudocode for our proposed method.

Algorithm 1 Forward Propagation

procedure ForwardProp({Xi}ki=0, {A
(`)
i }

k,L−2
i=0,`=0)

for i = 1, · · · , k do
for ` = 0, · · · ,L − 2 do

S(`)i ← arg minS≥0 ‖S
(`−1)
i − A(`)i S‖F

end for
end for

end procedure

Algorithm 2 Neural NCPD

Input: Tensor X ∈ Òn1×n2×...×nk, cost C
X1, X2, . . . , Xk← NCPD(X ), initialize {A(`)i }

k,L−2
i=0,`=0

for iterations = 1, . . . , T do
ForwardProp({Xi}ki=0, {A

(`)
i }

k,L−2
i=0,`=0)

for i = 1, · · · , k, ` = 0, · · · ,L − 2 do
A(`)i ←

(
optimizer

(
A(`)i ,

∂C
∂A(`)i

) )+
end for

end for
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Figure 1: Visualization of a two-layer HNCPD model.

Conclusions

In this paper, we introduced the hierarchical NCPD model and presented a novel method, Neural
NCPD, to train this decomposition. We empirically demonstrate the promise of this method on
both real and synthetic datasets; in particular, this model reveals the hierarchy of topics learned
at di�erent NCPD ranks, which is not available to standard NCPD or NMF-based approaches.
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Results

I We generate a synthetic tensor (see Figure 2) with
overlapping and non-overlapping blocks of varying
size and intensity to form a hierarchical structure.

I We see in Figure 3 that Neural NCPD is better able
to identify the topic structure of the underlying
model.

Our synthetic tensor
Figure 2: Visualization of the synthetic tensor.
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Figure 3: (Top left) Data tensor X with two levels of noise. (Top right) ranks 7, 5, and 3
Neural NCPD, Standard HNCPD, and HNTF approximations of X . (Bottom left) Underlying
topic modelling matrix. (Bottom right) topic modelling matrices for each method.

Table 1: Topic modeling loss and relative reconstruction on the synthetic dataset by
NCPD and NMF methods.

Topic Modeling Loss Relative Reconstruction Loss
σ2 = 0.1 σ2 = 0.4 σ2 = 0.1 σ2 = 0.4

Method Mode 7 − 2 7 − 4 4 − 2 7 − 2 7 − 4 4 − 2 r = 7 r(0) = 4 r(1) = 2 r = 7 r(0) = 4 r(1) = 2
Neural HNCPD 0.043 0.042 0.042 0.087 0.087 0.081 0.119 0.252 0.563 0.454 0.508 0.714
Standard HNCPD 0.106 0.101 0.189 0.145 0.193 0.204 0.119 0.494 0.828 0.454 0.612 0.892

1 0.163 0.236 0.182 0.171 0.144 0.170 0.119 0.502 0.795 0.454 0.576 0.781
HNTF 2 0.087 0.040 0.101 0.090 0.116 0.142 0.119 0.309 0.665 0.454 0.587 0.765

3 0.078 0.122 0.106 0.084 0.111 0.164 0.119 0.417 0.713 0.454 0.560 0.747
1 0.154 0.192 0.105 0.169 0.219 0.127 0.146 0.268 0.593 0.478 0.521 0.705

Neural NMF 2 0.075 0.244 0.146 0.153 0.190 0.160 0.141 0.289 0.585 0.475 0.513 0.710
3 0.119 0.164 0.110 0.158 0.197 0.140 0.151 0.236 0.576 0.477 0.512 0.693
1 0.098 0.182 0.052 0.164 0.219 0.139 0.118 0.235 0.558 0.472 0.524 0.707

Standard HNMF 2 0.080 0.199 0.090 0.151 0.213 0.088 0.118 0.245 0.566 0.472 0.505 0.709
3 0.060 0.165 0.085 0.137 0.193 0.114 0.118 0.233 0.563 0.472 0.503 0.717

I From Table 1, we see that the the topic mod-
elling loss for Neural NCPD is less than that of
every other NCPD and NMF model in all but one
case.

I Reconstruction loss for Neural NCPD is signifi-
cantly better than that of Standard HNCPD and
HNTF across rank and level of noise.

I The Twitter political data set is a data set of tweets sent
by eight political candidates during the 2016 presidential
election season.

I We bin tweets made by a candidate within each month
over 10 months, resulting in a tensor of size 8×10×12721.

I In Figure 4 we visualize topics learned by Neural NCPD and
see meaningful hierarchical relationships; e.g., Cruz and
Kasich, who left the race at similar times, are grouped to-
gether than rank 4.

Table 2: Relative reconstruction loss on the Twitter
political dataset.

Method r = 8 r(0) = 4 r(1) = 2
Neural NCPD 0.834 0.883 0.918

Standard NCPD 0.834 0.889 0.919
Standard HNCPD 0.834 0.913 0.976

HNTF-1 0.834 0.890 0.927
HNTF-2 0.834 0.909 0.956
HNTF-3 0.834 0.895 0.942
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Figure 4: A three-layer Neural NCPD on the Twitter dataset at ranks r = 8, r(0) = 4
and r(1) = 2. At each rank, we display the top keywords and topic heatmaps for
candidate and temporal modes.
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