Classifying Movement-Related EEG Data using Neural Networks

Chiao Lu*
Computer Science, UCLA

josephlu85@engineering.ucla.edu

[Abstract

We aim to classify 2,115 training/validation samples and
443 test samples of 1,000-timestep Electroencephalog-
raphy (EEG) signals gathered from 22 electrodes using
convolutional and recurrent neural network architectures.
We explored many deep learning architectures along with
many data preprocessing techniques, such as trimming,
subsampling, and averaging to augment the dataset for
better training. With our data preprocessing methods, our
ConvMixGRU is able to achieve an accuracy of 70.60%.

1. Introduction

EEG analysis has been used in a variety of fields includ-
ing biology, electrical engineering, and neural science. Be-
cause EEG measurements are noninvasive, the data gath-
ered contains significant noise. Being able to differentiate
important signal information encoded in EEG signals from
background noise is crucial in identifying the characteris-
tics of brain activities. Deep learning has recently become
a popular approach to handling this kind of data.

Moreover, given the temporal properties of EEG data,
it is natural to associate this classification task with Recur-
rent Neural Networks (RNN), which have been widely em-
ployed in the Natural Language Processing (NLP) domain.
RNNs are very powerful in encoding temporal dependen-
cies and properties in time series data. We look to incorpo-
rate RNNss in the classification of EEG data.

Another popular architecture that is studied extensively
in EEG classification is Convolutional Neural Networks
(CNN) [i6, 18, 111} i4]]. In CNNs, the EEG data can be re-
garded as a 2D pattern of channels signals over rows and
time over columns. As a result, we are motivated to per-
form convolution both temporally and spatially in this task.
By doing so, the bivariate features of EEG data can be ef-
fectively utilized.

In this report, we classify EEG data from the BCI Com-
petition 2008 - Graz dataset A [2], which consists of EEG

* these author contributed equally.

Alex Wang*
Computer Science, UCLA

alexhw@g.ucla.edu

Josh Vendrow*
Computer Science, UCLA

jvendrow@ucla.edu

data from 9 subjects performing four different motor im-
agery tasks (left hand, right hand, both feet, and tongue).
We investigate and analyze the aforementioned deep neural
networks and the combinations of them, along with differ-
ent data preprocessing techniques.

2. Methodologies
2.1. Data Preprocessing
2.1.1 Trimming

We first cluster samples into their corresponding labels and
examine their EEG signals by plotting the averaged signals
in their respective channel. As shown in Figure[T] the EEG
signals reveal distinguishable patterns roughly in the first
500 time steps. The signals in the later 500 time steps are
noisier and do not exhibit clear patterns. Therefore, we trim
away the later 500 time steps and perform further prepro-
cessing methods on the first 500 time steps.

Average EEG signal of channel 9 for a given class

— class 0
class 1

h class 2

class 3

=R - -]

potential

6 260 460 5(50 360]0‘00
timestep

Figure 1. Selected 1 channel out of 22 for demonstration. All other

channels show similar trends

2.1.2 Augmentation

Prior to data augmentation, the model overfits the training
data, with training accuracies attaining over 80% but low
validation accuracies around low 40%. To address this,
we augment our data using subsampling, window averag-
ing, maxpooling, and Gaussian noise addition. For subsam-
pling, we subsample at intervals of 5 timesteps starting at

timestep O to 4 individually on the trimmed data samples to
make five 100-timestep data samples. We then add Gaus-
sian noise n ~ N(u = 0, ¢ = 0.5) to these 100-timestep
data samples. We also average and maxpool the signals at
intervals of 5 timesteps. This gives us a total of 2,115 x 7
training and 443 x 7 testing samples. We determined the
specifics of strategy experimentally.

We perform the same augmenting procedures on test data
to get 7 samples from each datapoint and implement a ma-
jority voting system over these samples for classification.

3. Models

As defaults, we use rectified linear units (RELU, f(z) =
xifz > 0and f(x) = 0if z < 0) as activation functions
and we use adam optimizer for all models. Following the
results in [8]], which looked at the application of CNNs to
EEG Data, we use exponential linear units (ELU, f(z) =
xifz > 0and f(z) = e — 1lifz < 0) for convolution
layers. For regularization, we use Dropout layers and L2
regularization.

In our experiment, we tested a variety of architectures.
We list all the models we implemented in Appendix B.

3.1. AvgPoolCNN

We base one of our models on the shallow convolution
architecture presented in [8]. This model has a convolution
across time, followed by a convolution across all electrodes,
and then an average pool over time, directly to a dense layer
with 4 outputs to a softmax loss. We use ELUs as activa-
tion functions for the convolution layers. Our input size is
smaller than the input in this paper following the trimming
and subsampling process, so we decrease convolution sizes
accordingly and choose the specific parameters using hy-
perparameter selection.

3.2. ConvMixGRU and SimpleConvGRU

In a recent survey paper, Craik et el. [3] discussed
many practical models applied to EEG classification tasks.
Specifically, many effective models leveraged a combina-
tion of CNNs and RNNs [[7]. Motivated by this survey pa-
per, we created two models that consist of a convolutional
layer, GRU layer, and a Fully Connected layer with different
orders of convolution and GRU layer. We have also tested
with batchnormalization and dropout layers between them.
The details can be found in Appendix B.

3.3. SimpleGrid and Fourier model Model
3.3.1 SimpleGrid

Thus far, our models have ignored the positional configura-
tion of probes on the scalp. In this model, we transform the
original 22 channels into a 6 x 7 grid. This gives us data

samples of 6 x 7 x 100, where 6 x 7 refers to the 2D posi-
tional configuration of the 22 probes on the scalp. We pass
the input to a convolutional layer followed by a GRU layer
and then a FCN to perform the final classification.

3.3.2 SingleFourier

One popular method for EEG classification is the Fourier
method proposed by Bashivan [[1], which takes a multichan-
nel EEG time series and performs a Fourier transformation.
Each probe, after a FT (over whole timesteps), gives a fre-
quency domain signal. Now, with domain knowledge of the
brain waves [5], we know that there are three (frequency)
regions of interest - theta range (4-8 Hz), alpha range (8-12
Hz), and beta range (12 - 35 Hz). The frequency domain
signal is divided into these three ranges, which can be re-
garded as RGB values. With the spatial location of probes in
2D and RGB values obtained from each probe, we can ob-
tain an image from one sample. The structure of the model
in illustrated in Figure

AAAAA

i

EEG Time series Spectral Topography N &
&

O
¥
Maps <& & A &

Figure 2. Fourier network architecture

The image is then fed to a CNN (and optionally an RNN)
and then a softmax layer is used to perform classification.
A variant of the model transforms a multichannel EEG time
series into “movies” instead of images by chopping the time
series into several chunks (e.g. by splitting a 10 second se-
ries to 10 one-second series) and performs the same trans-
formation steps on each chunk.

4. Results and Discussion
4.1. Overall Results

The best testing accuracy is achieved by the ConvMix-
GRU model with 68.76% val. accuracy and 70.6% test ac-
curacy. The best result of a CNN only architecture on the
preprocessed EEG data is 59.35% val. accuracy and 62.76%
test accuracy. The SimpleGRUConv achieved a val. accu-
racy of 60.37% and test accuracy of 62.50%. Note that the
test accuracies are higher than validation accuracies because
we use a majority classifier on the test data. On the contrary,
the SimpleGrid and SingleFourier models performed much
worse, both with val. and test accuracies of around 40%.

The possible reason for bad performance using the state-of-
the-art model will be discussed in the next section.

4.2. Ablation Study

We also conduct an ablation study of different process-
ing techniques on our ConvMixGRU. Without any prepro-
cessing, ConvMixGRU only achieves 49.14% test accuracy.
Trimming only improves ConvMixGRU’s accuracy slightly
to 52.78%. Subsampling and noise provides the most im-
provement on test performance, attaining to 64.76% and
61.54% when applied individually, an increase of 15.62%
and 12.40% respectively. Combining three methods ren-
ders the most improvement of 21.46% on test accuracy. Us-
ing averaging and maxpooling only increases marginally
around 2% compared to no preprocessing. The details of
the ablation results are in Appendix A.

5. Discussion
5.1. ConvMixGRU Architecture

For convolution layers, we looked at models with a va-
riety of filter sizes based on the success of networks such
as VGGNet [10] and ResNet [10] that take advantage of
large stacks of small (3x3) filters. Our results for these
small convolutions were fairly poor, which is likely because
electrodes that are numbered closer may not actually have a
more important relationship. For this reason, we generally
replaced most convolutions across electrodes with a single
22x1 convolution, which avoids such an assumption.

For the RNN layer, we tried GRUs and LSTMs, and
in general GRUs performed slightly better than LSTMs in
classification. We tried out different sizes in multiples of
22, and 44 seems to performed the best.

The results listed in Appendix A show the capabilities
of both CNN and RNN architecture with both the AvgPool-
CNN and SimpleGRU accomplishing above 60+% test ac-
curacy. However, integrating both architectures boosted the
final performance a bit more. This emphasizes the benefits
of combining CNN and RNN in EEG data classification.
Moreover, the FCN right before the output layer was cru-
cial in our models. We also tried training our model with
a single subject. Although the validation accuracy on that
subject was comparable, the test accuracy across all subjects
was much lower than val accuracy. This indicates that the
network overfits from an individual and cannot generalize
to other subjects.

5.2. Why Do SimpleGrid and Fourier Method Fail?

In general, the Fourier method [1[] has had success in
practice, however it performs badly on our EEG dataset.
There are potentially three major reasons: not enough sam-
pling frequency, bad spatial resolution, and a coarse Fourier
transform.

5.2.1 Not Enough Frequency/Spatial Resolution

Recall that the beta range of a human brain wave is around
12 to 35 Hz. By Nyquist Theorem [9], we would need at
least 70 Hz sampling frequency. However we realized that
our sampling strategy sampled the data at 50 Hz. There-
fore, we lose information in the beta range. In addition, the
Fourier method in [1]] consumes 32 x 32 x 3 images for
CNNSs. Our inputs, on the other hand, only have 6 x 7 x 3
dimension. After a couple convolutional layers, the inputs
become too shallow. This leads to bad performance because
there is not sufficient data to learn from this smaller repre-
sentation of the data.

5.2.2 Coarse Fourier

Our Fourier strategy takes the entire time series and applies
a Fourier transform to get the frequency domain representa-
tion. Bashivan proposed another approach which is a more
refined method of applying the FT. As mentioned earlier,
they chop the time series into several one-second frames
and apply a FT onto each of the one-second frames. So, for
example, a 60-second time series would be chopped into 60
1-second time series, and we get 60 Fourier maps. Since
these chopped frames are related in time, we can addition-
ally use RNNSs to leverage the temporal relation.

6. Conclusion

Our results suggest that the optimal architecture is one
that leverages the benefits from both CNN and RNN. The
intrinsic EEG data property of signals over different chan-
nels forms a spatial pattern where CNNs can be applied. On
the other hand, the fact that the data was collected as time
series prompts the use of an RNN to capture the temporal
features. Combined with data preprocessing, our ConvMix-
GRU is able to achieve a test accuracy of 70.60%. This
demonstrates that a deep learning approach requires a large
dataset to train to its full potential.

Due to the time constraint and the scope of this project,
we only focus on the cores of optimizing the model per-
formance. For possible future work, we would like to try
ensembling different models, as well as more in-depth anal-
ysis of thr Fourier method. There are also other preprocess-
ing methods, in which we seek to automatically generate
data using Generative Adversarial Networks (GANs) and
Variational Autoencoder (VAR).

References

[1] P. Bashivan, I. Rish, M. Yeasin, and N. Codella.
Learning representations from eeg with deep
recurrent-convolutional neural networks. arXiv
preprint arXiv:1511.06448, 2015.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

C. Brunner, R. Leeb, G. Muller-Putz, A. Schlogl, and
B. Competition. Graz data set a. Institute for Knowl-
edge Discovery, and Institute for HumanComputer In-
terfaces Graz University of Technology, Austria, 2008.

A. Craik, Y. He, and J. L. Contreras-Vidal. Deep
learning for electroencephalogram (eeg) classification
tasks: a review. Journal of neural engineering,
16(3):031001, 2019.

V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M.
Gordon, C. P. Hung, and B. J. Lance. Eegnet: a
compact convolutional neural network for eeg-based
brain—computer interfaces. Journal of neural engi-
neering, 15(5):056013, 2018.

E. K. S. Louis, L. C. Frey, J. W. Britton, J. L. Hopp,
P. Korb, M. Z. Koubeissi, W. E. Lievens, and E. M.
Pestana-Knight. The normal eeg. In Electroen-
cephalography (EEG): An Introductory Text and At-
las of Normal and Abnormal Findings in Adults, Chil-
dren, and Infants [Internet]. American Epilepsy Soci-
ety, 2016.

P. Mirowski, D. Madhavan, Y. LeCun, and
R. Kuzniecky. Classification of patterns of eeg
synchronization for seizure prediction. Clinical

neurophysiology, 120(11):1927-1940, 2009.

P. Nagabushanam, S. T. George, and S. Radha. Eeg
signal classification using Istm and improved neural
network algorithms. Soft Computing, pages 1-23,
2019.

R. T. Schirrmeister, J. T. Springenberg, L. D. J.
Fiederer, M. Glasstetter, K. Eggensperger, M. Tanger-
mann, F. Hutter, W. Burgard, and T. Ball. Deep
learning with convolutional neural networks for brain
mapping and decoding of movement-related informa-
tion from the human eeg. arxiv, 2017. arXiv preprint
arXiv:1703.05051.

C. E. Shannon. Communication in the presence of
noise. Proceedings of the IRE, 37(1):10-21, 1949.

K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Y. R. Tabar and U. Halici. A novel deep learning ap-
proach for classification of eeg motor imagery signals.
Journal of neural engineering, 14(1):016003, 2016.

Appendix

A. Experiment Results

Model Performance (all preprocessing applied)

Model Val Acc Test Acc
ConvMixGRU 68.76% 70.60%
ConvMixGRU (1 Sub.) 61.57% 52.29%
SimpleGRUConv 60.37% 62.50%
AvgPoolCNN 59.35% 62.76%
VanillaGRU 62.20% 64.79%
VanillaLSTM 59.82% 61.17%
SimpleGrid 41.28% 40.20%
SingleFourier 36.73% 42.89%
FCN 34.92% 35.21%

Ablation Study on the best model

ConvMixGRU’s Performance on preprocessing methods

Model Val Acc Test Acc
68.76% 70.60%

All methods 61.57% 52.29%
(1 Sub.) (1 Sub.)

Subsampling 63.52% 64.76%
Gaussian Noise 60.33% 61.54%
Trimming 56.34% 52.78%
Window Avg. 50.43% 52.27%
MaxPool (5) 50.14% 50.69%
No preprocess 47.52% 49.14%

B. Architectures

Summaries of models tested in this report:

ConvMixGRU

Layer (type) Output Shape Param #
convld_1 (ConvlD) (None, 91, 22) 4862
batch_normalization_1 (Batch (Mone, 91, 22) 364
max_poolingld 1 (MaxPoolingl (MNone, 45, 22) 0
gru_1l (GRU) (None, 45, 44) 8844
dropout 1 (Dropout) (None, 45, 44) 0
flatten_1 (Flatten) (None, 1980) 0
dense_1 (Dense) (None, 64) 126784
dropout 2 (Dropout) (None, 64) 0
dense_2 (Dense) (None, 4) 260

Total params: 141,114
Trainable params: 140,932
Non-trainable params: 182

SimpleGRUConv SimpleGrid
Layer (type) Output Shape Param # Layer (type) Output Shape Param #
gru71 [GRU, (None, 108, 22) 2970 conv3d_1 (COI‘IV3D) (None, 4, 5, 49, 32) 800
convld 1 (Conle) (None, 91, 22) 4862 batchinormalizationil (Batch (None, 4, 6, 49, 32) 24
flatten 1 (Flatten) (None, 2002)] max_pooling3d_1 (MaxPooling3 (Mone, 2, 3, 49, 32) [¢]
dropout_l (Dropout) (None, 2@@2) 0] C{)I'IV3d_2 (COI‘IV3D) (None, 2, 3, 49, 1] 33
dense 1 (Dense) (None, &) 3012 reshape_1 (Reshape) (None, 6, 49) 2]
Total params: 15,844 gru_1l (GRU) (Nane, 20) 4200
Trainable params: 15,844
Non-trainable params: © dense_1 (Dense) (None, 32) 672
dropout 1 (Dropout) (Mone, 32) 0
dense_2 (Dense) (None, 4) 132
AvgPoolCNN
Total params: 5,861
Trainable params: 5,849
Layer (type) Output Shape Param # Non-trainable params: 12
input 1 (InputLayer) (None, 22, 100) 0
reshape_1 (Reshape) (None, 22, 108, 1) 0 SingleFourier
conv2d_1 (Conv2D) (None, 22, 91, 48) 528 Layer (type) Output Shape Paran &
batch normalization 1 (Batch (None, 22, 91, 48) 192 conv2d 1 (Conv2D) (None, 6, 6, 128) 1664
dropout_1 (Dropout) (None, 22, 91, 48) 0 reshape_1 (Reshape) {(None, 36, 128) 0
convad 2 (Conv2D) (Nonme, 1, 91, 46) 42280 batch_normalization 1 (Batch (None, 36, 128) 512
batch normalization 2 (Batch (None, 1, 91, 40) 160 reshape 2 (Reshape) (None, 6, 6, 128) 0
average_pooling2d_1 (Average (None, 1, 17, 40) 0 conv2d_2 (ConvaD) {None, 5, 5, 64) 39837
flatten 1 (Flatten) (None, 68@) 0 max_pooling2d 1 (MaxPooling2 (None, 2, 2, 64) 8
dense_1 (Dense) (None, 4) 2724 flatten 1 (Flatten) (None, 256) 8
activation_1 (Activation) (None, 4) 0 dropout 1 (Dropout) (None, 256) B
Total params: 45,884
Trainable params: 45,708 dense 1 (Dense) (None, 32) 8224
Non-trainable params: 176 dropout_2 (Dropout) (None, 32) 0
dense_2 (Dense) (None, 4) 132
i Total params: 43,364
SlmpleGRU Trainable params: 43,108
Non-trainable params: 256
Layer (type) Output Shape Param #
ru_1l (GRU None, 106, 22 2978
flatten 1 (Flatten) (None, 2200) 0
Layer (type) Output Shape Param #
dropout_1 (Dropout) (None, 2200) 0
reshape_1 (Reshape) (None, 2200) 0
dense_1 (Dense) (None, 4) 8804
dense 1 (Dense) (None, 1@0) 220100
Total params: 11,774
Trainable params: 11,774 dropout_1 (Dropout) (Mone, 108) [¢]
Non-trainable params: 0
dense_2 (Dense) (None, 100) 16100
dropout 2 (Dropout) (None, 160) 0
SimpleLSTM dense 3 (Dense) {None, 4) 404
Total params: 230,604
Layer (type) Output Shape Param # Trainable params: 230,604
Non-trainable params: O
1stm_1 (LSTM) (None, 108, 22) 3960
flatten 1 (Flatten) (None, 2200) 0
dropout_1 (Dropout) (None, 2200) 0
dense_1 (Dense) (None, 4) 8804

Total params: 12,764
Trainable params: 12,764
Non-trainable params: ©

