ECE239AS (RL) Final Report:
PPO Implementation for OpenAl Environments

Joshua Vendrow Glen Meyerowitz
Department of Computer Science Department of Electrical Engineering
jvendrow@ucla.edu gmeyerowitz@ucla.edu
Rahul Malavalli

Department of Computer Science
rahuli133@ucla.edu

1 Introduction

In this project, we are building upon the default project suggested for the class that examines the details
and applications of the seminal Proximal Policy Optimization (PPO) Algorithms paper introduced by
Shulman et al. [1]. The secondary aim of our project involves applying this PPO implementation to
simple OpenAl environments, such as the CartPole-v1 and CarRacing-v0 environments.

1.1 Background

Reinforcement learning (RL) has used value-based methods, like Q-learning, to great success in
certain applications. Deep Q-networks (DQNs) and their variations, for example, have exceeded
human expert play in some Atari video games [2]. Value-based RL, however, can usually only be
used to produce deterministic policies, and are not directly applicable to continuous action spaces.
Value-based methods could adapt to continuous action spaces through some form of discretization,
but they tend to perform poorly in these high-dimensional action spaces.

By learning the policy function directly, policy gradient algorithms attempt to remedy some of the
concerns with value-based methods. Some of the immediate benefits of policy gradient methods
include their inherent support for continuous action spaces and stochastic policies [3]. The stochastic
policies were especially useful in probabilistic scenarios, like tic-tac-toe, where a deterministic
policy is not preferred. Learning through stochastic policies also allows policy gradient methods to
circumvent strategies like the epsilon-greedy policy, since a stochastic policy already explores the
action space probabilistically.

However, the “vanilla" policy gradient suffers from its tendency to converge to a local optimum rather
than the global one. Furthermore, because the policy is being learned directly, even small changes
in the parameter space of the policy can result in large impacts to the performance of that policy.
Therefore, vanilla policy gradient methods explore the policy space via very small steps to avoid
collapsing the entire policy training process, making it much slower to train than normal Q-learning.
These small step sizes greatly reduce sample efficiency; because the step size is small, policy gradient
methods tend to utilize a relatively low amount of information from each sample it encounters. This
type of sample inefficiency is especially undesirable when the algorithm has to gather samples by
interacting with a real environment.

A new policy gradient algorithm called trust region policy optimization (TRPO) attempts to solve
some of these problems. Specifically, TRPO attempts to improve sample efficiency by taking as
large of a step as possible without affecting the policy too greatly. The TRPO algorithm does so by
enforcing that each step taken must land within some distance, or “trust region", from the previous
policy; here, “distance" is defined by the KL-divergence between the previous and new policies’

probability distributions [4]]. This allows TRPO to take the maximum possible step size without
leaving the trust region.

Although TRPO theoretically provides a good method, in practice the computation of KL-divergence
per step proves to be too expensive and makes many applications intractable. Even after performing
an approximation that makes the TRPO calculations efficient, it becomes difficult to select hyper-
parameters (determining the coefficient for the KL-divergence penalty) that can generalize to many
different problems, or even to different stages within one problem.

2 Proximal policy optimization

The PPO algorithm attempts to solve some of these problems by replacing the KL-divergence in trust
regions with conservative policy iteration (CPI), which utilizes a probability ratio that denotes the
change in a policy per step [Sl]. Here the probability ratio is defined as

Yyl (at | St)
Tt(e) 7r‘%ld(at|87ﬁ) M
where 7y is the policy with parameter 6. In practice, this probability ratio can be calculated through
repeated sampling of the environment. To overcome excessively large policy updates from the original
CPI implementation, this is combined with a new “clip" functionality that attempts to prevent the
algorithm from taking too large of steps.

LCLIP

To do so, PPO introduces a novel learning objective , presented below:

LOHE — E[min(n(@)/lt, clip(r¢(0),1 — €,1 + €) A, (2)

where 6 is the observed parameter, [denotes an expectation calculated through discrete time steps, 7;

is a probability ratio measuring the change in the new policy over the old policy, A; is an estimator of
the advantage function (where the advantage given an action and state is measured as the difference
between the (Q function for an action at a state and the value function of the state), and e denotes the
parameter by which to clip the probability ratio r;(6) to discourage too much change from the old
policy. In Figure[6] we display a graph of this clip function for positive and negative advantages.

1<0
pop A>0 A<
l1-€1 "

1
1
1
1
1
1
1
0 1 14¢€ LELIP

Figure 1: The plot of LI for positive advantages (left) and negative advantages (right) as a
function of the probability ratio r; (). We see that this loss function clips any benefits that cause the
probability ratio to to exceed the range (1 —¢,1 + €).

Combining this loss with a squared-loss error and an entropy term, PPO produces a L¢L/P+VF+S
loss function, produced below:

LEEPAVEES () — By [LEHP(0) — er LY 7(6) + eaS[mol(s0)| 3)

. . 2
where 6 is the observed parameter, LV is the squared-error loss LV = (Vg(st) — Ve) for the
learned state-value function V' (s) from the advantage function calculation, S is an entropy function
to ensure exploration as per [6][7], and c¢; and cy are constant coefficient hyperparameters.

Utilizing the composite objective function in equation (3, the PPO algorithm is able to generalize ef-
fectively to many different settings. It was able to outperform many continuous control environments,
and even replicate state of the art results in some discrete domains.

In Algorithm [I| we display the basic pseudocode for the PPO algorithm. Here, L refers to the
LELIPHVEES 55 from above.

Algorithm 1 PPO

for iteration = 0,1,2, ... do
Run policy 7g_,, in environment for 1" steps

old

Compute advantage estimates Aq,... Ap
Optimize loss L wrt # with K epochs of SGD (via Adam)
end for

This pseudocode presents a basic outline for the implementation. Over the course of some fixed or
variable number of iterations, the actor is used to collect 7" timestamps of data, and then the model is
optimized with respect to the LtC LIPHVE+S for K epochs. In the next section, we fill out the details
of our implementation choices on top of this outline.

3 Implementation

We implemented the PPO algorithm in Python with the PyTorch library. Our implementation accepts
an OpenAl gym environment and optimizes a policy to run on this environment. We used an
Actor-Critic model, where both the actor and critic are represented by neural networks.

3.1 Actor-Critic Methods

Policy gradient methods inherit many of the same limitations that value-based approaches, like
Q-learning, suffer from due to the nature of reinforcement learning. For instance, both methods
require some form of sampling to learn from an environment. The two most prominent sampling
methods are Monte Carlo (MC), which generates samples only after an entire episode has completed,
and Temporal Difference (TD) learning, which learns after each step in an episode by approximating
the next step’s value through its own value function. Thus, the MC method exhibits low bias but a
very high variance, resulting in noisy gradients that can be especially harmful in policy gradient-based
learning. Actor-critic models were introduced to take advantage of the lower variance and iterative
nature of TD methods.

Specifically, actor-critic methods create two models that are trained simultaneously; the actor, which
acts as the policy function, and the critic, which acts as the value function. This combination
implements TD learning by using the critic (value function) to evaluate the value of an action taken
by the actor (policy function). Utilization of actor-critic models with PPO helps mitigate some of the
issues related to high variance that vanilla policy gradient methods are typically susceptible to [8].

3.2 Generalized Advantage Estimation (GAE)

Policy gradients will often have a high variance, making it difficult to reduce loss and increase
reward consistently. By implementing an Advantage Function, it is possible to dramatically decrease
the variance of the policy gradient, but they introduce some amount of bias into the algorithm [9].
Schulman et al. provide the definition of Generalized Advantage Estimation (GAE), which estimates
the advantage using the A-return, as:

Ay = Ri(\) = V(sy) “)

The GAE value is calculated and updated during each step of execution. Finally, the GAE is fed back
to the agent loss calculation as a part of agent training during each step.

4 Rudimentary Environment

To gain a better understanding of environment creation, we initially experimented with a rudimentary
car racing track that we created ourselves.

4.1 Initial Environment

Specifically, each simplified race track is generated on a 2D plane via a function of the formy = f;(x),
where y is the y-coordinate of the track center at some x-coordinate z. When f;(z) is applied to
all T € [Tyin, Tmaz|, & center line for the track is generated, where ', and X,,q. are the bounds
for the 2D plane. A different f;(x) is defined for each unique i*" track. The environment is also
determined by a “track width" parameter, which determines the perpendicular distance of the track
sides from the generated center line. The figure 2] shows three separate generated tracks for a) y = 0,
b) y = z, and ¢) y = sin(x). All environments have a track width of 2 units.

Figure 2: Graphs of rudimentary race track examples.

4.2 Initial State and Action Space

The self-driving car is modeled by an agent with a discrete state and action space. The state
space combines the “sensed" features from the race track environment with the car’s steering angle
(with respect to the 2D plane) and the speed. The car’s action space, however, is limited to only
manipulations of the steering angle and speed, also discrete. The car’s internal state is a velocity
defined as a tuple (v, 6), where v is the speed and 6 is the angle. Each action is also a tuple (Av, Af),
where Av and A6 are applied to the state’s speed and angle if allowed by the environment; for
example, the speed is capped at a maximum absolute value of 1. The allowed values for each of these
variables are included in table [Tlbelow:

Table 1: Allowed Values

v || 0.00,40.25, £0.50, £0.75, +-1.00
g |0, £15,+30, 145

Av || —0.25,0,+0.25

A0 [—15,0, +15

4.3 Initial Baseline

We create a baseline to compare our trained algorithm, and to ensure that we are properly learning in
the environment. To do so, we implement an agent that randomly chooses an action from the action
space in each time instance. For evaluation, we also have generated a simple reward function that
yields +100 if the track is completed, —100 if the agent drives off the track, and —1 for each time
step that has passed without either other event.

We first define the state of the agent at ¢ = 0. The agent is located at (0, 0), with a speed of 0 and a
direction parallel to the x-axis. The following plots show the motion of the agent as it moves along
the track. In a) the agent successfully completes the track, while in b) the agent drives off the track.

.
.o

a) Agent completes track b) Agent drives off track

The following plot shows the reward plot for a single epoch with the random agent.

-100

-150

5 Experiments

5.1 CartPole-vl

To test our PPO implementation, we apply it to the CartPole-vl OpenAl environment. As illustrated
in figure[3] the CartPole-v1 environment includes a “cart" agent that attempts to balance a long pole
by driving forward or backward (right or left) on a flat surface; the goal of the agent is to ensure that
the pole does not fall off of the cart.

v-tip
(pole velocity at tip) ~1
|
0
(pole angle)
v-cart |
(cart velocity)
y “ <=orce =+1 H Force = ->
X
(cart position)
CartPole-v1 Observation Space CartPole-v1 Action Space

Figure 3: Observation space (left) and action space (right) for the CartPole-V1 environment.

The environment returns an observation space of four continuous values (cart position, cart velocity,
pole velocity at tip, and pole angle), and supports two discrete actions (drive right or drive left). In
line with the goal of balancing the pole as long as possible, the environment returns a reward of +1 for
every timestep that it is upright, and terminates an episode when the pole is more than 15 degrees off
of the vertical or the cart itself is more than 2.4 units from the center. The results of this experiment
are described in section

5.2 Discretized CarRacing-v(

To test our PPO on a self-driving car, we opted for the CarRacing-v0 environment from OpenAl,
because of its well-developed implementation. Specifically, the CarRacing-v0 environment exposed
a 96x96 RGB image of a top-down view of the car and race track as its observation space, and
supported a continuous action space containing three values (steering angle, gas, and brake). An

example of this observation space is visible in figure[d] and the range of accepted action space values
is described in table 21

Table 2: CarRacing-v0 Original Continuous Action Space

Action Value Minimum | Maximum
Steering Angle -1.0 +1.0
Gas 0.0 1.0
Brake 0.0 1.0

0321

Figure 4: Observation space for the CarRacing-v0 environment.

To simplify the training process, we first discretized the action space such that each action value can
only correspond to the ones included in table 3] with three possibilities for each value. As a result,
we created a total of 27 discrete actions from all combinations of possible action values. We chose a
discrete action space because a continuous action space would require the PPO algorithm to sample
an action to perform from a probabilistic policy for every step in the training, which may require
much more time to successfully complete due to an emphasis on exploration.

Table 3: Discretized Action Space
Steering Angle | Gas | Brake

-1.0 0.0 0.0
0.0 0.5 0.5
+1.0 1.0 1.0

6 Results
6.1 CartPole Results
We developed two metrics to quantitatively evaluate the performance of and measure the effectiveness

of our PPO policy. First, we calculate average loss by averaging the loss over the optimization epochs
for the sample collected at each iteration of the PPO algorithm. We calculate average reward by

pre-selecting a series of initial observations and averaging the total reward of the policy with these
initial observations. In Figure [6] we display the average loss and reward at each iteration of our
experiment.

0.35 200
" B
n 0.30 o
S E 150
g 0.25 =
° S
v 0.20 © 100
g)
@ 0.15 ©
z g s0
0.10 <
: , : 01— . :
0 200 400 600 0 200 400 600
Iteration lteration

Figure 5: Average loss (left) and average reward (right) for the CartPole-V1 environment. When
calculating average rewards, we terminate each trial after 200 steps because the agent will have
successfully “solved" the environmental criteria after this number of steps. We calculate these
rewards separately from the optimization task using a pre-selected series of initial observations, so
this sampling termination does not affect our policy.

We see that after about 600 iterations of the algorithm, we are able to consistently achieve a reward
of 200, satisfying the solve criteria. We also note that the increase in loss after iteration 500 can be
attributed to updates in the critic, which evaluates state values to calculate advantages.

We implemented separate Actor-Critic models for each of the environments on which we trained an
agent using the PPO implementation. The following figures show the neural network architectures
that were used for both the actor and critic for the CartPole-v1 environment. While the network
architectures used were the same, the size of the input and output layers are different due to the
different environment sizes.

Full Full
Input 4y 4\ RelLU 4[\ uy Output
Connected [— | —_ | Connected

Figure 6: Neural Network Architecture for the Actor and Critic Models in the discrete CartPole-v1
Environment. The input for both the actor and critic neural network is the current state of the agent.
For the last fully connected layer, the critic has one output and the actor’s output size is the number
of actions. For the actor model, we perform classification by adding a softmax layer before the final
output.

6.2 CarRacing Results

When implementing a model for this modified CarRacing-v0 environment, the image-based obser-
vation space could no longer be effectively solved via the fully-connected neural networks used for
the CartPole-v1 environment. Instead, convolutional neural networks (CNNs) had to be leveraged
because of their success in image analysis tasks. Therefore, we explored two main approaches:
training a new CNN from scratch, and fine-tuning a pretrained ResNet-18 CNN with an appended
fully-connected neural network.

Unfortunately, even when trained for over 1500 episodes, both policy (actor) models ended up settling
on only one action for all states, regardless of its efficacy in the actual environment. We attribute some

of this to vanishing gradients we observed during training, that may be mitigated with the addition
of batchnorm layers, experimentation with different learning rates, and/or other hyperparameter
fine-tuning.

7 Conclusion

Our goal for this project was to build on the default project suggested for the class that examines
the details and applications of the seminal Proximal Policy Optimization (PPO) Algorithms paper
introduced by Shulman et al. [1]. In order to engage with this, we decided to develop a simple
environment in which we could train an agent to interact with the environment using a PPO algorithm.
Our end goal was to train an agent to drive on a racetrack utilizing our basic PPO implementation.

We were able to successfully implement a PPO algorithm based on the paper from Shulman et al.,
which used actor-critic models to optimize behavior and a Generalized Advantage Estimation in order
to reduce variance in the model.

We were able to successfully apply the PPO algorithm to environments with discrete action spaces,
such as the CartPole-v1 environment from OpenAl, which utilized a fully-connected neural network
that converged in less than 1000 PPO steps. In CartPole-v1, over the limited number of training
iterations, we were able to see an increase in the reward received by the agent from 50 to 200.

To apply the discrete PPO implementation to an OpenAl car racing environment, we modified the
CarRacing-v0 by discretizing the action space. We trained two separate actor-critic models in this
environment, one that used a new CNN and a second that used a pretrained ResNet-18 model. With
this implementation, both actor-critic models suffered from vanishing gradient issues and lack of
computational resources. Further model experimentation, hyper-parameter tuning, and prolonged
training (via GPUs) may be necessary to obtain better results.

We learned more about the CarRacing-v0 environment and it presented additional challenges beyond
what we had thought. Traditionally, the CarRacing-v0 environment generates a 2D box of pixels
that must be interpreted by a CNN. To promote model learning, we may be able to simplify the
environment by explicitly extracting features, such as steering angle, speed, and distance to the
nearest wall. This could allow us to utilize a simpler fully-connected neural network that could be
trained faster.

Computational resources have been a major limiting factor in these results. Although we were able to
locally train simple fully-connected neural networks for environments like CartPole-v1, we quickly
realized that the training larger CNN-based models would require hardware acceleration (GPUs, etc.)
to be effective.

We learned a tremendous amount about RL and policy optimizations methods while working on this
project. We extend our thanks to Dr. Yang, Joris, Qiujing, and Chinmay for their help this quarter.

8 Team Contributions

Rahul Malavalli discretized the CarRacing environment from OpenAl to allow for the PPO im-
plementation to interface with that environment. He generalized the actor-critic method and PPO
implementation to work on environments of all sizes and continuous vs. discrete action spaces; such
as for the CarRacing-v0 environment. He set up and experimented with the pretrained ResNet-18
CNN approach to the CarRacing-v0 environment. He contributed to our Poster Presentation and Final
Report.

Glen Meyerowitz developed a custom environment for car racing outside of the OpenAl framework.
The team was not able to test the PPO algorithm on this environment, as we did not get beyond the
OpenAl environments. He contributed to our Poster Presentation and Final Report.

Joshua Vendrow implemented the Proximal Policy Optimization (PPO) for our agent, including the
actor-critic method and GAE. He spent many hours troubleshooting the implementation on both the
CartPole and CarRacing environments from OpenAl to ensure proper behavior of the algorithm. He
contributed to our Poster Presentation and Final Report.

Code

Here is a link to the GitHub repository containing our implementation:

https://github.com/rahulm/ece239-deepracer

References

[1] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

[3] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Proceedings of the 12th
International Conference on Neural Information Processing Systems, NIPS’99, page 1057-1063,
Cambridge, MA, USA, 1999. MIT Press.

[4] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
region policy optimization, 2015.

[5] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In Proceedings of the Nineteenth International Conference on Machine Learning, ICML 02,
page 267-274, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[6] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep

reinforcement learning. In International conference on machine learning, pages 1928-1937,
2016.

[7] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8(3-4):229-256, May 1992.

[8] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
and Nando de Freitas. Sample efficient actor-critic with experience replay. /CLR, 2017.

[9] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. /CLR, 2016.

[10] Christopher J.C.H Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279-292, 1992.

[11] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. British Library,
1989.

https://github.com/rahulm/ece239-deepracer

	Introduction
	Background

	Proximal policy optimization
	Implementation
	Actor-Critic Methods
	Generalized Advantage Estimation (GAE)

	Rudimentary Environment
	Initial Environment
	Initial State and Action Space
	Initial Baseline

	Experiments
	CartPole-v1
	Discretized CarRacing-v0

	Results
	CartPole Results
	CarRacing Results

	Conclusion
	Team Contributions

