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ABSTRACT

Wiring logic within the Drosophila visual system has been a
popular field of study for decades. Through specific wiring
patterns, neurons send accurate signals that allow Drosophila
to mature into adulthood. A common theory claims that a
neuron’s gene expression levels are important for determin-
ing wiring patterns during adolescence. In this study, we
apply five standard machine learning methods to predict the
presence of synaptic connections between neurons from their
gene expression levels. We then perform feature selection on
this data set, and identify a subset of genes that we suggest
could contribute to processes causing synaptic connections.

1. INTRODUCTION

Drosophila Melanogaster, the scientific name for a fruit fly,
contains many photoreceptors within its visual system that
receive and convert light into neuronal information. These
neurons undergo targeting techniques to reach the medulla,
a stem-like structure in the fly brain. In Figure 1, we dis-
play an image of a neuron targeting to the M10 layer of the
medulla. Precise wiring of neurons is necessary for these
photo-receptors to correctly process the stimulus information
they are receiving. The M1 and M5 layers of the medulla hold
an array of neurons [1].

Fig. 1. The Mi1 neuron targeting to the M10 layer of
the medulla, passing through the M1 and M5 layers in the
Drosophila visual system.

One common hypothesis is that gene expression levels are
responsible for specific synaptic connections between neu-
rons [2]. In this study, we aim to use these genes to predict
specific synaptic connections. We also apply feature selection
methods to identify a subset of genes that lead to the forma-
tion of synaptic connections.

Specifically, given a network with weights of synaptic
connections between neurons and the gene expression levels
of each neuron, we aim to:

1. Predict the presence synaptic connections between neu-
rons given their genetic expression.

2. Identify the genes that contribute most to synaptic con-
nections.

2. DATA

Here we describe the data sets we use in our analysis and
describe our pre-processing steps.

2.1. Developmental Transcriptome Data

A transcriptome data set is a collection of neurons with their
respective gene expression levels. Our transcriptome data in-
cludes the gene expression for 25 unique neuron types that
form connections in the M1 and M5 medulla layers. The
data set is stored as a matrix, where rows represent neurons
and columns represent genes. For each neuron, expression of
4319 genes is shown. The gene expression was sampled at
the 48th hour of a Drosophila lifespan.

2.2. Adult Connectome Data

A connectome data set contains the average number of synap-
tic connections between each presynaptic and postsynaptic
neuron. The presynaptic neuron is where the synaptic con-
nection is sent from and the postsynaptic neuron is where the
connection is received.

Our connectome data set is sampled from adult Drosophila.
It is one weighed network of neuron connections in the
Drosophila M1 and M5 layers. Nodes represent neurons and
weighted edges represent the average number of synaptic
connections between each pair of nodes.



2.3. Pre-Processing

For each pair of neurons we have their underlying genetic ex-
pressions and the average number of synaptic connections be-
tween them.

We model each data point as a triple (u,v,w), in which u
and v represents the pre and post-type neuron respectively and
w is the average number of connecting synapses. In running
our methods, we model each feature vector as the concatena-
tion of the genetic expression of u and v. See figure 2 for a
visualization of the data representation.
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Fig. 2. A visual representation of our data representation pro-
cedure used to convert the transcriptome and connectome data
into an acceptable data format for our models.

In the regression task, we let w be the label. For the clas-
sification tasks, we determined class-type y using a threshold
of 0. Namely, if w = 0, set y = 0 and w > 0, set y = 1.

3. METHODS

Here we describe our experimental setup and the machine
learning models that we apply to the data set.

3.1. Experimental Setup

Here we describe our experimental procedure for training and
evaluation of our classification models. For a single trial of
our training/testing procedure for a given model, we create
a random 80/20 training and testing split. First, we select
the hyperparemeters by splitting our training set into 5 even
folds and performing 5-fold cross-validation for each hyper-
paremeter. Once the hyperparemeters are chosen, we retrain
our model on the full training set and then evaluate on the test
set.

For the neural network, after performing cross-validation,
we re-split the training data into an 80/20 split for training and

validation, train on the train set, and use the validation set to
determine at what epoch to terminate. We then use this model
as our final model and perform evaluation on the test set.

For each model, we repeat this full process for 10 trials
randomizing the train/test split at each step, and average the
resulting test accuracies for our final reported test accuracy.

3.2. Models

Here we give a brief description of each model used in our ex-
periments. We use one regression model, which aims to pro-
duce a continuous numerical value to approximate the output,
and four classification models, which aim to produce a dis-
crete output. In this case the label 0 represents no synaptic
connection and 1 represents a non-zero synaptic connection.

3.2.1. Linear Regression

Linear regression aims to compute the optimal affine hyper-
plane (see, e.g., [3], Section 3.1) and references therein. It
does so by minimizing the mean squared error loss

L =
1

n

n∑
i=1

(yi − ŷi)
2. (1)

The R2 value of a linear regression model is a common
metric used to measure the relationship between the features
(independent variables) and the labels (dependent variables).

3.2.2. Support Vector Machine

Given a set of data points, a support vector machine finds a
separating hyper plane (see, e.g., [3], Section 7) and refer-
ences therein. It does so by minimizing the number of er-
roneously classified points, while maximizing the magnitude
of the margin separating the classes. Specifically, an SVM
solves the optimization task:

min
w,b,ξ

1

2
wtw + C

N∑
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0

(2)

where 1
‖w‖ is magnitude of the the margin, and w and

b represent the separating hyperplane. We perform hyper-
paremeter selection to experimentally choose C, the mis-
classification penalty.

3.2.3. Decision Tree

Decision trees are a common machine learning model that
form a tree structure to classify a given test data point (see,
e.g., [3], Section 1.6) and references therein. At each node,
the model splits the input data point along branches based
on one of the features. To chose which features to place in
this decision tree, the model uses the entropy gain metric, a



measure of in randomness caused by spliting the data along
a feature. We perform hyperparemter selection to choose the
depth of the decision tree.

3.2.4. K Nearest Neighbors

K Nearest Neighbors (KNN) is a classification model that
classifies a test data point by identifying the K closest points
in the training set (see, e.g., [3], Section 2.5) and references
therein. For these K points the model applies a simple major-
ity vote to choose the label for the test data point. We perform
hyper parameter selection to choose K experimentally.

3.2.5. Neural Network

A neural network is a highly influential machine learning
model (see, e.g., [3], Section 5.1) and references therein. A
neural network passes input through a series of layers param-
eterized by weight matrices, and updates the weights through
a process called back-propagation. Back-propogation is the
process of calculating the gradient of each weight matrix in
terms of the output of the final layer. In our experiments we
use a basic feed-forward neural network in which each layer
is modeled by a single matrix multiplication followed by a
non-linear activation function. We use 2 hidden layers with
30 nodes per layer and use a RELU activation. During our
training procedure, we performed a hyperparameter search
over the learning rate.

3.3. Feature Selection Process

In order to determine which genes are most important in the
formation of synaptic connections we use feature selection.
Generally, feature selection aims to identify the most impor-
tant features in a data set.

We use a basic feature selection in which each model is
run individually on each of the features in the data set. Specif-
ically, for each feature, we extract the column in our data ma-
trix corresponding to that feature then use only that feature to
train the model. We then apply the training/testing procedure
described in Section 3.1 on this single-column data matrix.

After running this feature selection procedure on each of
our models, we generate a ranking αm(i) for each model m
and feature i by sorting the results (test accuracy for clas-
sification, R2 for regression) for each model. For example,
αm(i) = k would suggest feature i is the kth best feature ac-
cording to modelm. Here, 1 ≤ m ≤M whereM = 4, repre-
senting four of our five models, as we exclude the neural net-
work due to computational constraints. Also, 1 ≤ i ≤ 8638,
where 8638 is the number of features.

From the αm(i) values, we calculate a final aggregated
rank for each feature by averaging the rankings for each fea-
ture from each model. This defines our feature ‘importance
score’

ζ(i) =
1

M

M∑
m=1

αm(i)

We then get our final ranking for each model by sorting the
values of ζ(i).

4. RESULTS

We first run each model on our full data set to assess the full
predictive accuracy of the gene expression data. We then ap-
ply feature selection methods as described in Section 3.3 to
identify a subset of ‘important’ features for predicting the for-
mation of synaptic connections.

4.1. General Performance

We first run each of our models on the full data set in order to
measure the data set’s ability to accurately predict the synap-
tic connections. In Table 1 we display the results of running
each of our models on the full data set (see Section 3.1 for
details on the training/testing procedure). For linear regres-
sion we list the R2 value and for the classification models we
display the accuracies for the full data set. We also present
the sensitivity (accuracy among neuron pairs that truly have
a synaptic connection) and the specificity (accuracy among
neuron pairs that truly do not have a synaptic connection).

Table 1. Results for running our classification models and
linear regression on the data set. We provide accuracies for
the full data set, for true examples (having a synapse connec-
tion), and false examples (not having a synapse connection).

Model All Sensitivity Specificity
SVM 0.634 0.614 0.654
Decision Tree 0.634 0.6 0.668
KNN 0.632 0.564 0.702
Neural Net 0.673 0.630 0.720

Linear Regression
R2 0.337 — —

4.2. Selecting Top Features

Now, following the procedure described in Section 3.3 we
perform a basic feature selection on our data set to identify
the genes that contribute most to predicting the presence of
synaptic connections. In Table 2 we display the sorted fi-
nal rankings ζ(i) for the top ten most important genes in the
data set for predicting synaptic connections (See Section 3.3
for the definition of ζ(i)). We note that all 10 of these genes
come from gene expression levels for the pre-type neuron (see
Section 2.3 for a description of the data representation), sug-
gesting that the gene expression levels of the pre-type neuron
are more important than those of the post-type neuron. To in-
vestigate this, we also separated the data set into only the gene
expression levels of pre-type neurons and post-type neurons



(by extracting only those columns of the data matrix repre-
senting gene expression levels of that specific neuron).

In Table 3, we display the results of running our regres-
sion and classification models on only the pre-type neuron
gene expression levels (‘pre-’) and only the post-type neuron
gene expression levels (‘post-’), compared to the accuracy of
the full data-set (‘all’). We see that, as suggested by the fea-
ture selection experiment, the full pre-type neuron expression
levels attain a higher classification accuracy than the full post-
type neuron gene expression levels by every metric. In fact,
for three of the four classification models, the pre-type neuron
information outer-performs the full data set, suggesting that
the post-type neuron features contains a significant amount of
redundant information.

Table 2. Top 10 ten features (genes) in the data set, ranked by
the Score metric ζ(i) that aggregates the rankings of features
by each model.

Rank Gene
1 Stacl
2 Sec61beta
3 HP5
4 CG14757
5 CG9921
6 GluRIA
7 CG4287
8 CG12253
9 ND-75
10 Tob

Table 3. Results for running our classification models and
linear regression on full data set, as well as only on the pre-
type and post-type neuron information.

Model All Pre- Post-
SVM 0.634 0.653 0.567
Decision Tree 0.634 0.648 0.571
KNN 0.632 0.645 0.580
Neural Net 0.673 0.648 0.572

Linear Regression
R2 0.337 0.214 0.094

5. DISCUSSION

Here we discuss the significance of our results and their con-
tributions to efficient experimentation, theories for synaptic
specificity, and future research directions.

5.1. Significance of the Data set

Our neural network achieved the highest accuracy of 0.634
on the full data set, and each of our models achieved an ac-
curacy of above 0.6. We also had a significant R2 value of
0.337. These values are not outstanding, but suggest the data
set (which is currently small) has meaningful predictive abil-
ity. Once more data is collected we can rerun these experi-
ments and expect our results to improve.

5.2. Experimental Benefits

A common problem is to identify genes that affect neuron
function. Currently, researchers perform gene function stud-
ies by creating mutations or transgenic animals [4]. These ex-
perimental approaches are extremely time consuming and ex-
pensive. By identifying a subset of genes that predict synapse
connections, we can we limit the number of necessary ex-
periments, and experimentally quantify the importance of the
‘top’ genes we identified.

5.2.1. Upregulation and Downregulation

Upregulation (Downregulation), commonly known as “Gain
of Function/Loss of Function” (GOF/LOF) is a process that
increases (decreases) a receptor’s sensitivity level, resulting in
increase (decrease) in the cell’s response to a stimulus. Cur-
rent research utilizes the popular GOF/LOF method to ana-
lyze specific gene functions [5].

Up (down) regulation is commonly done using gene over-
expression / knockdown, in which the expression levels of a
specific gene are drastically reduced using CRISPR technol-
ogy [6]. An experiment is then performed to quantify the
impact on proteins related to that gene and the level of impact
can suggest the importance of the gene. This experiment is
repeated for many genes present in the neuron.

Using our machine learning models, we aim to identify
the genes that contribute most to the formation of synaptic
connections. By formulating a subset of important genes, we
could knockdown or over-express only genes from this sub-
set, substantially reducing the number of experiments to per-
form and improving efficiency.

Additionally, there is significant demand for understand-
ing the formation of cell recognition molecules that con-
tribute to synaptic connections. Although the molecular
mechanisms of neural connections have been studied for
decades, we only know a small list of genes that encode
cell recognition molecules [7]. By identifying a subset of
genes that contribute to synaptic connections and performing
over-expression / knockdown on this subset, we can help dis-
cover which genes lead to the formation of cell recognition
molecules.

5.2.2. Theories for Synaptic Specificity

According to the predominant theory of code matching, a spe-
cific level of gene expression in two neurons will guarantee



the presence of a synaptic connection between the neurons.
Some recent works have suggested that gene expression does
not directly correspond to the presence of a synaptic con-
nection between two neurons, but rather increases the like-
lihood of a connection. While these broad hypotheses cannot
be tested using popular gene function studies, computational
methods such as the ones in this paper can help to determine
which of these theories is more likely based on the data col-
lected.

5.3. Future Work

Our data set, as described in Section 2, is a weighted network
with features on each node. In our experiments we choose
to represent each data point with a single feature vector and
discrete label to match the expected input of the classical ma-
chine learning models described in Section 3.2. In recent
years, more complex models have been popularized to han-
dle network data, such as the highly influential graph neural
network (GNN) model [8]. To meaningfully run these com-
plex models require large-scale data, significantly exceeding
the current size of our data set.

Thus, a sub problem would entail collecting more data
points by mapping neuron transcriptome data to adult con-
nectome data for different cell types. Currently, only 40-50
neuron cell types are known by their respective morphology
and locations within the brain. Further, many cell types are
being sequenced for their gene expression levels, and PCA re-
sults have clustered many more neurons into classes [9]. Each
of these classes represents a cell type, classified by common
marker genes. In order to add more data points, we need to
learn the location, morphology and synaptic partners of these
cell types. One way in which this is done is to map the ge-
netic transcriptome data of a class of cell types to a continu-
ous timeline. In other words, given a random neuron’s gene
expression levels, identify the time in the fly’s lifespan from
which those expression levels were taken. Once all genes ex-
pression levels are mapped to their respective times, we will
be able to learn the cell type’s interaction with other cell types
at a given time.

6. CONCLUSION

We applied five standard machine learning models to a data
set consisting of gene expression levels of neurons to predict
the presence of synaptic connections. Using the full data sets
we were able to get significant regression and classification
results. By applying feature selection methods, we were able
to identify a subset of genes that could significantly contribute
to the processes related to the formation of synaptic connec-
tions. We expect that once more data is collected, the accura-
cies attained by our methods could improve significantly, and
we suggest that our results could be of value for future study
of neuron wiring patterns.
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